Matching Items (1,237)
Filtering by

Clear all filters

137410-Thumbnail Image.png
Description
Mobile technology has introduced a new opportunity for students with autism spectrum disorder to communicate. Tablets, like the iPad, allow the users to customize applications for their needs. Users have also found iPads to be less stigmatizing because so many people own them and use them for various purposes. In

Mobile technology has introduced a new opportunity for students with autism spectrum disorder to communicate. Tablets, like the iPad, allow the users to customize applications for their needs. Users have also found iPads to be less stigmatizing because so many people own them and use them for various purposes. In the fast-paced world of technology, however, research cannot always keep up. It is becoming more important for the teachers and caregivers to evaluate the iPad and its applications for their efficacy in helping improve the child's communication skills. After a thorough review of current research on app use in educational settings, five criteria for evaluating app quality emerged. These criteria are: the ability to customize the application, the motor skills the student needs to operate the system, the resources and time needed for the intervention, the research or evidence-based practices behind the application, and the cost of using this device. The website, Apps For ASD, was created to provide teachers with this resource material.
ContributorsBoyd, Tara Katherine (Author) / Hart, Juliet (Thesis director) / Farr, Wendy (Committee member) / Gehrke, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / College of Public Works (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor)
Created2013-12
135117-Thumbnail Image.png
Description
Students with autism spectrum disorders (ASD) are increasingly included in general education and are expected to access core content, including science. Development of science content knowledge, scientific literacy, and scientific thinking are areas emphasized in legislation as well as the National Science Education Standards (NSES) as critical for all students.

Students with autism spectrum disorders (ASD) are increasingly included in general education and are expected to access core content, including science. Development of science content knowledge, scientific literacy, and scientific thinking are areas emphasized in legislation as well as the National Science Education Standards (NSES) as critical for all students. However, participation in science inquiry and discourse is often challenging for students with ASD given their difficulties with communication. Moreover, evidence on teaching academic content, such as science, to students with disabilities is limited. This comprehensive literature review synthesized ten studies of science intervention strategies for students with ASD. Findings suggest that students struggle with obtaining and retaining the background knowledge and strenuous vocabulary necessary to be successful with science content. Though studies related to instructional interventions in science for students with ASD are limited, these students can benefit from direct instruction through the implementation of supplementary materials such as e-texts, graphic organizers, and scripted lessons. Although there is not much research that supports inquiry-based practices, these interventions engage and assist students in the science curriculum by providing hands-on explorations with the material. Evidence-based practices for interventions in science for students with ASD have focused on direct instruction and inquiry-based practices. Direct instruction elicits explicit strategies in delivering science content concretely and directly. Many direct instruction approaches deal with the incorporation of visual supports and supplementary material to guide in student retention and access of complex ideas and terminology. Through direct instruction, the teacher facilitates and leads instruction to benefit the acquisition of science background knowledge. Contrastingly, inquiry-based practices encourage independent learning and hands-on explorations. While science is frequently inquiry-based in the general education setting, the communication challenges for students with ASD may contribute to difficulties with interactions and collaborations among peers within an inquiry lesson. Future implications include the need for additional, empirically-supported interventions in science for students with ASD and the need to target more inquiry-based science interventions for this population.
ContributorsFrankel, Ashleigh Jeanne (Author) / Barnett, Juliet (Thesis director) / Farr, Wendy (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
My Barrett Honors Thesis Paper synthesizes three components of my Thesis Project, which demonstrates the process of developing strong research from the beginning stage of investigation of a problem to implementation of an intervention to address that problem. Specifically, I engaged in research on the topic of mathematics and students

My Barrett Honors Thesis Paper synthesizes three components of my Thesis Project, which demonstrates the process of developing strong research from the beginning stage of investigation of a problem to implementation of an intervention to address that problem. Specifically, I engaged in research on the topic of mathematics and students with autism spectrum disorders (ASD). My review of the literature demonstrated a current dearth in the knowledge on effective interventions in math for this population of students. As part of my project, I developed and implemented an intervention to address the problem and help improve the knowledge base in the fields of autism and mathematics. Through the initial research process it was determined that students with autism spectrum disorders are being included more frequently in the general educational setting, and are therefore increasingly expected to access and master core curricular content, including mathematics. However, mathematics often presents challenges to students with ASD. Therefore, the first part of my Thesis Project is a comprehensive literature review that synthesized eleven studies of mathematics intervention strategies for students with ASD. Researching the current literature base for mathematics interventions that have been implemented with students with ASD and finding only eleven studies that met the inclusionary criteria led to the writing of the second part of my Thesis Project. In this second portion, I present how three research-based practices for students with autism, self-management, visual supports, and peer-mediated instruction, can be implemented in the context of teaching a higher-level mathematics skill, algebraic problem solving, specifically to students with ASD. By employing such strategies, teachers can assist their students with ASD to benefit more fully from mathematics interventions, which in turn may help them strengthen their mathematics skills, increase independence when completing problems, and use acquired skills in community or other applied settings. As part of the second portion of my Thesis Project, I developed a visual support strategy called COSMIC (a mnemonic device to guide learners through the steps of algebraic problem solving) to help aid students with ASD when solving simple linear equations. With the goal of contributing to the current research base of mathematics interventions that can support students with ASD, for the final part of Thesis Project I worked with a local middle school teacher to assist her in implementing our COSMIC intervention with her student with ASD. Results indicated the student improved in his algebraic problem solving skills, which suggests additional interventions with students with ASD to be recommended as part of future research.
ContributorsCleary, Shannon Taylor (Author) / Barnett, Juliet (Thesis director) / Farr, Wendy (Committee member) / Department of Finance (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description

Human Papillomavirus, or HPV, is a viral pathogen that most commonly spreads through sexual contact. HPV strains 6 and 11 normally cause genital warts, while HPV strains 16 and 18 commonly cause cervical cancer, which causes cancerous cells to spread in the cervix. Physicians can detect those HPV strains, using

Human Papillomavirus, or HPV, is a viral pathogen that most commonly spreads through sexual contact. HPV strains 6 and 11 normally cause genital warts, while HPV strains 16 and 18 commonly cause cervical cancer, which causes cancerous cells to spread in the cervix. Physicians can detect those HPV strains, using a Pap smear, which is a diagnostic test that collects cells from the female cervix.

Created2021-04-06
Description

Johann Gregor Mendel studied patterns of trait inheritance in plants during the nineteenth century. Mendel, an Augustinian monk, conducted experiments on pea plants at St. Thomas’ Abbey in what is now Brno, Czech Republic. Twentieth century scientists used Mendel’s recorded observations to create theories about genetics.

Created2022-01-13
175283-Thumbnail Image.jpg
Description

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar stage of development. Had the flies not been manipulated, they would have developed into adults with vermilion eyes. (2) Beadle and Ephrussi transplanted the donor optic discs into the bodies of several types of larvae, including those that would develop with normal colored eyes (brick red), and those that would develop eyes with other shades of red, such as claret, carmine, peach, and ruby (grouped together and colored black in the image). (3a) When implanted into normal hosts that would develop brick red eyes, the transplanted optic disc developed into an eye that also was brick red. (3b) When implanted into abnormal hosts that would develop eyes of some other shade of red, the transplanted optic discs developed into eyes that were vermilion. Beadle and Ephrussi concluded that there was a factor, such as an enzyme or some other protein, produced outside of the optic disc that influenced the color of the eye that developed from the disc.

Created2016-10-11
175286-Thumbnail Image.jpg
Description

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things,

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things, including nutrients that the cell needs. Neurospora crassa is a species of mold that grows on bread. In the early 1940s, Beadle and Tatum conducted an experiment to discover the abnormal genes in Neurospora mutants, which failed to produce specific nutrients needed to survive. (1) Beadle and Tatum used X-rays to cause mutations in the DNA of Neurospora, and then they grew the mutated Neurospora cells in glassware. (2) They grew several strains, represented in four groups of paired test tubes. For each group, Neurospora was grown in one of two types of growth media. One medium contained all the essential nutrients that the Neurospora needed to survive, which Beadle and Tatum called a complete medium. The second medium was a minimal medium and lacked nutrients that Neurospora needed to survive. If functioning normally and in the right conditions, however, Neurospora can produce these absent nutrients. (3) When Beadle and Tatum grew the mutated mold strains on both the complete and on the minimal media, all of the molds survived on the complete media, but not all of the molds survived on the minimal media (strain highlighted in yellow). (4) For the next step, the researchers added nutrients to the minimal media such that some glassware received an amino acid mixture (represented as colored squares) and other glassware received a vitamin mixture (represented as colored triangles) in an attempt to figure out which kind of nutrients the mutated molds needed. The researchers then took mold from the mutant mold strain that had survived on a complete medium and added that mold to the supplemented minimal media. They found that in some cases the mutated mold grew on media supplemented only with vitamins but not on media supplemented only with amino acids. (5) To discover which vitamins the mutant molds needed, Beadle and Tatum used several tubes with the minimal media, supplementing each one with a different vitamin, and then they attempted to grow the mutant mold in each tube. They found that different mutant strains of the mold grew only on media supplemented with different kinds of vitamins, for instance vitamin B6 for one strain, and vitamin B1 for another. In experiments not pictured, Beadle and Tatum found in step (4) that other strains of mutant mold grew on minimal media supplemented only with amino acids but not on minimal media supplemented only with vitamins. When they repeated step (5) on those strains and with specific kinds of amino acids in the different test tubes, they found that the some mutated mold strains grew on minimal media supplemented solely with one kind of amino acid, and others strains grew only on minimal media supplemented with other kinds of amino acids. For both the vitamins and amino acid cases, Beadle and Tatum concluded that the X-rays had mutated different genes in Neurospora, resulting in different mutant strains of Neurospora cells. In a cell of a given strain, the X-rays had changed the gene normally responsible for producing an enzyme that catalyzed a vitamin or an amino acid. As a result, the Neurospora cell could no longer produce that enzyme, and thus couldn't catalyze a specific nutrient.

Created2016-10-12
Description

The Southern Gastric Brooding Frog (Rheobotrahcus silus) was a frog species that lived in Australia. It was declared extinct in 2002. Once adult males fertilized the eggs of females, the females swallowed their eggs. The stomachs of the females then functioned somewhat like wombs, protecting the eggs while they gestated.

The Southern Gastric Brooding Frog (Rheobotrahcus silus) was a frog species that lived in Australia. It was declared extinct in 2002. Once adult males fertilized the eggs of females, the females swallowed their eggs. The stomachs of the females then functioned somewhat like wombs, protecting the eggs while they gestated. Once the eggs developed into juveniles, female frogs performed oral birth and regurgitated their young.

Created2017-02-06
175295-Thumbnail Image.jpg
Description

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks). The Notch proteins are embedded in the receiving cell membrane, and they have at least two parts: an intracellular domain (inside the cell) and the receptor (outside the cell). Once the ligand and receptor bind to each other, a protease (represented by the dark red triangle) can sever the intracellular domain from the rest of the Notch receptor. Inside the nucleus of the receiving cell (represented by the gray area) are the cellês DNA (represented by the multi-colored helices) and its transcription factors (blue rectangles). Transcription factors are proteins that bind to DNA to regulate transcription, the first step in gene expression, which eventually yields proteins or other products. Initially, repressor proteins (represented by a red irregular hexagon) prevent transcription factors from allowing transcription. When the severed Notch receptor intracellular domain reaches the nucleus, it displaces the repressor. The transcription factor can then signal for transcription to occur. 1) There is a Notch receptor protein in the membrane of a receiving cell, and a ligand for this receptor (for example, Delta) in the membrane of the signaling cell. When the ligand binds to the receptor, the intracellular domain of the receptor changes shape. 2) Inside the receiving cell, there are proteases. Once the intracellular domain of the receptor changes shape, the protease can bind to it and shear the intracellular domain away from the rest of the receptor molecule. 3) The severed intracellular domain is shuttled to the receiving cell nucleus. Here, the intracellular domain displaces a repressor protein. This allows a transcription factor to initiate DNA transcription. During transcription, DNA is used as a template to create RNA. Following transcription, the process of translation occurs, which uses RNA as a template to create proteins. These proteins influence the behavior, fate, and differentiation of cells, which contribute to normal embryonic development

Created2014-08-21