Matching Items (56)
Filtering by

Clear all filters

129036-Thumbnail Image.png
Description

Background: African American women are one of the least active demographic groups in the US, with only 36% meeting the national physical activity recommendations in comparison to 46% of White women. Physical activity begins to decline in African American women in adolescence and continues to decline into young adulthood. Yet, few

Background: African American women are one of the least active demographic groups in the US, with only 36% meeting the national physical activity recommendations in comparison to 46% of White women. Physical activity begins to decline in African American women in adolescence and continues to decline into young adulthood. Yet, few interventions have been developed to promote physical activity in African American women during this critical period of life. The purpose of this article was to evaluate the acceptability and feasibility of a culturally-relevant Internet-enhanced physical activity pilot intervention for overweight/obese African American college females and to examine psychosocial and behavioral characteristics associated with intervention adherence and completion.

Methods: A 6-month single group pre-posttest design was used. Participants (n = 27) accessed a culturally-relevant Social Cognitive Theory-based physical activity promotion website while engaging in a minimum of four moderate-intensity physical activity sessions each week. Acceptability and feasibility of the intervention was assessed by participant retention and a consumer satisfaction survey completed by participants.

Results: Fifty-six percent of participants (n = 15) completed the intervention. Study completers were more physically active at baseline (P = 0.05) and had greater social support for exercise from family members (P = 0.04). Sixty percent of study completers (n = 9) reported the website as “enjoyable” or “very enjoyable” to use and 60% (n = 9) reported increased motivation from participation in the physical activity program. Moreover, 87% (n = 13) reported they would recommend the website to a friend.

Conclusions: Results provide some preliminary support for the acceptability and feasibility of an Internet-enhanced physical activity program for overweight/obese African American women, while highlighting important limitations of the approach. Successful promotion of physical activity in college aged African American women as they emerge into adulthood may result in the development of life-long healthy physical activity patterns which may ultimately reduce physical activity-related health disparities in this high risk underserved population. Future studies with larger samples are needed to further explore the use of Internet-based programs to promote physical activity in this population.

Created2015-06-02
128249-Thumbnail Image.png
Description

Objective: This cross sectional study aims to determine the effects of gender and parental perception of safety at school on children’s physical activity (PA) levels.

Materials and Methods: Parents of school aged Mexican children residing in Guadalajara, Mexico City, and Puerto Vallarta, completed surveys about their children’s PA measures. The physical

Objective: This cross sectional study aims to determine the effects of gender and parental perception of safety at school on children’s physical activity (PA) levels.

Materials and Methods: Parents of school aged Mexican children residing in Guadalajara, Mexico City, and Puerto Vallarta, completed surveys about their children’s PA measures. The physical activity indicators were evaluated using linear and logistical regression models.

Results: Analysis did not indicate that gender moderated the relationship between parental perception of safety and PA measures, but significant gender issues exist with girls participating less than boys in the three measures of PA in this study (p<0.001).

Conclusion: Results suggest the need for additional interventions promoting physical activity in girls in Mexico.

Created2016-01
128610-Thumbnail Image.png
Description

Changes in distribution policies have increased median MELD at transplant with recipients requiring increasing intensive care perioperatively. We aimed to evaluate association of preoperative variables with postoperative respiratory failure (PRF)/increased intensive care unit length of stay (ICU LOS)/short-term survival in a high MELD cohort undergoing liver transplant (LT). Retrospective analysis

Changes in distribution policies have increased median MELD at transplant with recipients requiring increasing intensive care perioperatively. We aimed to evaluate association of preoperative variables with postoperative respiratory failure (PRF)/increased intensive care unit length of stay (ICU LOS)/short-term survival in a high MELD cohort undergoing liver transplant (LT). Retrospective analysis identified cases of PRF and increased ICU LOS with recipient, donor, and surgical variables examined. Variables were entered into regression with end points of PRF and ICU LOS > 3 days. 164 recipients were examined: 41 (25.0%) experienced PRF and 74 (45.1%) prolonged ICU LOS. Significant predictors of PRF with univariate analysis: BMI > 30, pretransplant MELD, preoperative respiratory failure, LVEF < 50%, FVC < 80%, intraoperative transfusion > 6 units, warm ischemic time > 4 minutes, and cold ischemic time > 240 minutes. On multivariate analysis, only pretransplant MELD predicted PRF (OR 1.14, 𝑝 = 0.01). Significant predictors of prolonged ICU LOS with univariate analysis are as follows: pretransplant MELD, FVC < 80%, FEV1 < 80%, deceased donor, and cold ischemic time > 240 minutes. On multivariate analysis, only pretransplant MELD predicted prolonged ICU LOS (OR 1.28, 𝑝 < 0.001). One-year survival among cohorts with PRF and increased ICU LOS was similar to subjects without. Pretransplant MELD is a robust predictor of PRF and ICU LOS. Higher MELDs at LT are expected to increase need for ICU utilization and modify expectations for recovery in the immediate postoperative period.

Created2016-10-24
128606-Thumbnail Image.png
Description

Myoelectric artificial limbs can significantly advance the state of the art in prosthetics, since they can be used to control mechatronic devices through muscular activity in a way that mimics how the subjects used to activate their muscles before limb loss. However, surveys indicate that dissatisfaction with the functionality of

Myoelectric artificial limbs can significantly advance the state of the art in prosthetics, since they can be used to control mechatronic devices through muscular activity in a way that mimics how the subjects used to activate their muscles before limb loss. However, surveys indicate that dissatisfaction with the functionality of terminal devices underlies the widespread abandonment of prostheses. We believe that one key factor to improve acceptability of prosthetic devices is to attain human likeness of prosthesis movements, a goal which is being pursued by research on social and human–robot interactions. Therefore, to reduce early abandonment of terminal devices, we propose that controllers should be designed so as to ensure effective task accomplishment in a natural fashion. In this work, we have analyzed and compared the performance of three types of myoelectric controller algorithms based on surface electromyography to control an underactuated and multi-degrees of freedom prosthetic hand, the SoftHand Pro.

The goal of the present study was to identify the myoelectric algorithm that best mimics the native hand movements. As a preliminary step, we first quantified the repeatability of the SoftHand Pro finger movements and identified the electromyographic recording sites for able-bodied individuals with the highest signal-to-noise ratio from two pairs of muscles, i.e., flexor digitorum superficialis/extensor digitorum communis, and flexor carpi radialis/extensor carpi ulnaris. Able-bodied volunteers were then asked to execute reach-to-grasp movements, while electromyography signals were recorded from flexor digitorum superficialis/extensor digitorum communis as this was identified as the muscle pair characterized by high signal-to-noise ratio and intuitive control. Subsequently, we tested three myoelectric controllers that mapped electromyography signals to position of the SoftHand Pro. We found that a differential electromyography-to-position mapping ensured the highest coherence with hand movements. Our results represent a first step toward a more effective and intuitive control of myoelectric hand prostheses.

ContributorsFani, Simone (Author) / Bianchi, Matteo (Author) / Jain, Sonal (Author) / Simoes Pimenta Neto, Jose (Author) / Boege, Scott (Author) / Grioli, Giorgio (Author) / Bicchi, Antonio (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-10-17
128585-Thumbnail Image.png
Description

Introduction: Options currently available to individuals with upper limb loss range from prosthetic hands that can perform many movements, but require more cognitive effort to control, to simpler terminal devices with limited functional abilities. We attempted to address this issue by designing a myoelectric control system to modulate prosthetic hand

Introduction: Options currently available to individuals with upper limb loss range from prosthetic hands that can perform many movements, but require more cognitive effort to control, to simpler terminal devices with limited functional abilities. We attempted to address this issue by designing a myoelectric control system to modulate prosthetic hand posture and digit force distribution.

Methods: We recorded surface electromyographic (EMG) signals from five forearm muscles in eight able-bodied subjects while they modulated hand posture and the flexion force distribution of individual fingers. We used a support vector machine (SVM) and a random forest regression (RFR) to map EMG signal features to hand posture and individual digit forces, respectively. After training, subjects performed grasping tasks and hand gestures while a computer program computed and displayed online feedback of all digit forces, in which digits were flexed, and the magnitude of contact forces. We also used a commercially available prosthetic hand, the i-Limb (Touch Bionics), to provide a practical demonstration of the proposed approach’s ability to control hand posture and finger forces.

Results: Subjects could control hand pose and force distribution across the fingers during online testing. Decoding success rates ranged from 60% (index finger pointing) to 83–99% for 2-digit grasp and resting state, respectively. Subjects could also modulate finger force distribution.

Discussion: This work provides a proof of concept for the application of SVM and RFR for online control of hand posture and finger force distribution, respectively. Our approach has potential applications for enabling in-hand manipulation with a prosthetic hand.

ContributorsGailey, Alycia (Author) / Artemiadis, Panagiotis (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-02-01
128583-Thumbnail Image.png
Description

Objectives: To determine the off-shift sleep strategies of bi-ethnic night-shift nurses, the relationship between these sleep strategies and adaptation to shift work, and identify the participant-level characteristics associated with a given sleep strategy.

Methods: African-American and non-Hispanic White female, night-shift nurses from an academic hospital were recruited to complete a survey

Objectives: To determine the off-shift sleep strategies of bi-ethnic night-shift nurses, the relationship between these sleep strategies and adaptation to shift work, and identify the participant-level characteristics associated with a given sleep strategy.

Methods: African-American and non-Hispanic White female, night-shift nurses from an academic hospital were recruited to complete a survey on sleep–wake patterns (n = 213). Participants completed the standard shiftwork index and the biological clocks questionnaire to determine sleep strategies and adaptation to night-shift work. In addition, chronotype was determined quantitatively with a modified version of the Munich ChronoType Questionnaire. Most participants worked ~3 consecutive 12-h night-shifts followed by several days off.

Results: Five sleep strategies used on days off were identified: (a) night stay, (b) nap proxy, (c) switch sleeper, (d) no sleep, and (e) incomplete switcher. Nap proxy and no sleep types were associated with poorer adaptation to night-shift work. The switch sleeper and incomplete switcher types were identified as more adaptive strategies that were associated with less sleep disturbance, a later chronotype, and less cardiovascular problems.

Conclusion: Behavioral sleep strategies are related to adaptation to a typical night-shift schedule among hospital nurses. Nurses are crucial to the safety and well-being of their patients. Therefore, adoption of more adaptive sleep strategies may reduce sleep/wake dysregulation in this population, and improve cardiovascular outcomes.

Created2014-12-19
128576-Thumbnail Image.png
Description

Previous studies have shown that parental protectiveness is associated with increased pain and disability in Functional Abdominal Pain Disorder (FAPD) but the role that perceived child self-efficacy may play remains unclear. One reason why parents may react protectively towards their child’s pain is that they perceive their child to be

Previous studies have shown that parental protectiveness is associated with increased pain and disability in Functional Abdominal Pain Disorder (FAPD) but the role that perceived child self-efficacy may play remains unclear. One reason why parents may react protectively towards their child’s pain is that they perceive their child to be unable to cope or function normally while in pain (perceived low self-efficacy). This study sought to examine (a) the association between parent-perceived child pain self-efficacy and child health outcomes (symptom severity and disability); and (b) the role of parental protectiveness as a mediator of this association. Participants were 316 parents of children aged 7–12 years with FAPD. Parents completed measures of perceived child self-efficacy when in pain, their own protective responses to their child’s pain, child gastrointestinal (GI) symptom severity, and child functional disability. Parent-perceived child self-efficacy was inversely associated with parent-reported child GI symptom severity and disability, and parental protectiveness mediated these associations. These results suggest that parents who perceive their child to have low self-efficacy to cope with pain respond more protectively when they believe he/she is in pain, and this, in turn, is associated with higher levels of GI symptoms and disability in their child. This finding suggests that directly addressing parent beliefs about their child’s ability to manage pain should be included as a component of FAPD, and potentially other child treatment interventions.

Created2016-09-19
127899-Thumbnail Image.png
Description

Background: Numerous studies have reported that spending time in nature is associated with the improvement of various health outcomes and well-being. This review evaluated the physical and psychological benefits of a specific type of exposure to nature, forest therapy.

Method: A literature search was carried out using MEDLINE, PubMed, ScienceDirect, EMBASE, and ProQuest

Background: Numerous studies have reported that spending time in nature is associated with the improvement of various health outcomes and well-being. This review evaluated the physical and psychological benefits of a specific type of exposure to nature, forest therapy.

Method: A literature search was carried out using MEDLINE, PubMed, ScienceDirect, EMBASE, and ProQuest databases and manual searches from inception up to December 2016. Key words: “Forest” or “Shinrin -Yoku” or “Forest bath” AND “Health” or “Wellbeing”. The methodological quality of each randomized controlled trials (RCTs) was assessed according to the Cochrane risk of bias (ROB) tool.

Results: Six RCTs met the inclusion criteria. Participants’ ages ranged from 20 to 79 years. Sample size ranged from 18 to 99. Populations studied varied from young healthy university students to elderly people with chronic disease. Studies reported the positive impact of forest therapy on hypertension (n = 2), cardiac and pulmonary function (n = 1), immune function (n = 2), inflammation (n = 3), oxidative stress (n = 1), stress (n = 1), stress hormone (n = 1), anxiety (n = 1), depression (n = 2), and emotional response (n = 3). The quality of all studies included in this review had a high ROB.

Conclusion: Forest therapy may play an important role in health promotion and disease prevention. However, the lack of high-quality studies limits the strength of results, rendering the evidence insufficient to establish clinical practice guidelines for its use. More robust RCTs are warranted.

Created2017-10-18
127888-Thumbnail Image.png
Description

The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive

The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional single-gain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pick-and-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands.

ContributorsFu, Qiushi (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2018-01-10
127859-Thumbnail Image.png
Description

Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems

Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank and open-minded assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.

Created2017-10-09