Matching Items (16)
171643-Thumbnail Image.png
Description
Dubai has emerged as an important center for international business attracting significant inflows of the foreign workforce. Dubai’s population is unique as nationals represent only 15% of the total population, with 200 other nationalities comprising the other 85%. Thus, Cultural Diversity is unavoidable. Cultural Diversity refers to cultural heterogeneity such

Dubai has emerged as an important center for international business attracting significant inflows of the foreign workforce. Dubai’s population is unique as nationals represent only 15% of the total population, with 200 other nationalities comprising the other 85%. Thus, Cultural Diversity is unavoidable. Cultural Diversity refers to cultural heterogeneity such as differences in race, ethnicity, language, nationality, and religion. As it is a characteristic of Culturally Heterogeneous Workgroups (CHWs), cultural diversity affects how they interact with each other. Since the core concepts of leadership are dealing, inspiring, and motivating teams, the team member’s diversity directly connects with the leadership concept.While many researchers argue whether (CHWs) suffer or benefit from cultural diversity, it is agreed that such diversity has its challenges. Diverse workgroups have been shown to suffer from poor cohesion and social integration. People who are different from their co-worker’s report feeling uneasy and having less organizational commitment. Miscommunication, the development of obstacles, and improper adaptation behaviors are all possible negative impacts. In the absence of local studies on how cultural diversity is related to leadership, this thesis questioned the connection between cultural diversity and leadership level through a quantitative research approach. This would help understand how different leaders at different levels perceive cultural diversity challenges, which would help focus on specific level(s) in future and research practical ways to address cultural diversity issues of cultural diversity. Measurement scales for leadership levels and cultural diversity challenges were developed. A survey was used to collect data from skilled workers in the construction industry in Dubai, and non-parametric statistical methods were used to analyze the collected data and answer the research question. Whereas a strong correlation was initially expected between work experience, whether in total or within UAE, and leadership level, this was not the case. Most importantly, no significant evidence was found to support a relationship between cultural diversity challenges and both participants’ leadership level and their UAE work experience.
ContributorsSalama, Anas (Author) / Ariaratnam, Samuel (Thesis advisor) / El Asmar, Mounir (Committee member) / Czerniawski, Thomas (Committee member) / Arizona State University (Publisher)
Created2022
152364-Thumbnail Image.png
Description
Civil infrastructures are susceptible to damage under the events of natural or manmade disasters. Over the last two decades, the use of emerging engineering materials, such as the fiber-reinforced plastics (FRPs), in structural retrofitting have gained significant popularity. However, due to their inherent brittleness and lack of energy dissipation, undesirable

Civil infrastructures are susceptible to damage under the events of natural or manmade disasters. Over the last two decades, the use of emerging engineering materials, such as the fiber-reinforced plastics (FRPs), in structural retrofitting have gained significant popularity. However, due to their inherent brittleness and lack of energy dissipation, undesirable failure modes of the FRP-retrofitted systems, such as sudden laminate fracture and debonding, have been frequently observed. In this light, a Carbon-fiber reinforced Hybrid-polymeric Matrix Composite (or CHMC) was developed to provide a superior, yet affordable, solution for infrastructure damage mitigation and protection. The microstructural and micromechanical characteristics of the CHMC was investigated using scanning electron microscopy (SEM) and nanoindentation technique. The mechanical performance, such as damping, was identified using free and forced vibration tests. A simplified analytical model based on micromechanics was developed to predict the laminate stiffness using the modulus profile tested by the nanoindentation. The prediction results were verified by the flexural modulus calculated from the vibration tests. The feasibility of using CHMC to retrofit damaged structural systems was investigated via a series of structural component level tests. The effectiveness of using CHMC versus conventional carbon-fiber reinforced epoxy (CF/ epoxy) to retrofit notch damaged steel beams were tested. The comparison of the test results indicated the superior deformation capacity of the CHMC retrofitted beams. The full field strain distributions near the critical notch tip region were experimentally determined by the digital imaging correlation (DIC), and the results matched well with the finite element analysis (FEA) results. In the second series of tests, the application of CHMC was expanded to retrofit the full-scale fatigue-damaged concrete-encased steel (or SRC) girders. Similar to the notched steel beam tests, the CHMC retrofitted SRC girders exhibited substantially better post-peak load ductility than that of CF/ epoxy retrofitted girder. Lastly, a quasi-static push over test on the CHMC retrofitted reinforced concrete shear wall further highlighted the CHMC's capability of enhancing the deformation and energy dissipating potential of the damaged civil infrastructure systems. Analytical and numerical models were developed to assist the retrofitting design using the newly developed CHMC material.
ContributorsZhou, Hongyu (Author) / Attard, Thomas L (Thesis advisor) / Fafitis, Apostolos (Thesis advisor) / Mignolet, Marc P (Committee member) / Ariaratnam, Samuel (Committee member) / Thomas, Benjamin (Committee member) / Blumsom, Jim (Committee member) / Arizona State University (Publisher)
Created2013
154239-Thumbnail Image.png
Description
Much of the water and wastewater lines in the United States are nearing the end of their useful life. A significant reinvestment is needed in the upcoming decades to replace or rehabilitate the water and wastewater infrastructure. Currently, the traditional method for delivering water and wastewater pipeline engineering and construction

Much of the water and wastewater lines in the United States are nearing the end of their useful life. A significant reinvestment is needed in the upcoming decades to replace or rehabilitate the water and wastewater infrastructure. Currently, the traditional method for delivering water and wastewater pipeline engineering and construction projects is design-bid-build (DBB). The traditional DBB delivery system is a sequential low-integration process and can lead to inefficiencies and adverse relationships between stakeholders. Alternative project delivery methods (APDM) such as Construction Manager at Risk (CMAR) have been introduced to increase stakeholder integration and ultimately enhance project performance. CMAR project performance impacts have been studied in the horizontal and vertical construction industries. However, the performance of CMAR projects in the pipeline engineering and construction industry has not been quantitatively studied.

The dissertation fills this gap in knowledge by performing the first quantitative analysis of CMAR performance on pipeline engineering and construction projects. This study’s two research objectives are:

(1) Develop a CMAR baseline of commonly measured project performance metrics

(2) Statistically compare the cost and schedule performance of CMAR to that of the traditional DBB delivery method

A thorough literature review led to the development of a data collection survey used in conjunction with structured interviews to gather qualitative and quantitative performance data from 66 completed water and wastewater pipeline projects. Performance data analysis was conducted to provide performance benchmarks for CMAR projects and to compare the performance of CMAR and DBB.

This study provides the first CMAR performance benchmark for pipeline engineering and construction projects. The results span across seven metrics in four performance areas (cost, schedule, project change, and communication). Pipeline projects delivered using CMAR have a median cost and schedule growth of -5% and 5.10%, respectively. These results are significantly improved from DBB baseline performance shown in other industries. To verify this, a statistical analysis was done to compare the cost and schedule performance of CMAR to similar DBB pipeline projects. The results show that CMAR pipeline projects are being delivered with 6.5% less cost growth and with 12.5% less schedule growth than similar DBB projects, providing owners with increased certainty when delivering their pipeline projects.
ContributorsFrancom, Tober C (Author) / Ariaratnam, Samuel (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2015
158284-Thumbnail Image.png
Description
Water utilities across the United States are facing numerous challenges, such as limited funding and increasing project complexity, in constructing and upgrading their aging infrastructure. One innovative method to overcome these challenges is through the use of alternative project delivery methods (APDM), such as construction management at-risk (CMAR) and design-build

Water utilities across the United States are facing numerous challenges, such as limited funding and increasing project complexity, in constructing and upgrading their aging infrastructure. One innovative method to overcome these challenges is through the use of alternative project delivery methods (APDM), such as construction management at-risk (CMAR) and design-build (DB). Previous research has shown that APDM have the potential to deliver higher performing water infrastructure projects when compared to the traditional design-bid-build (DBB) method. However, there is a need to further examine APDM practices and develop tools that may support utilities in the delivery of their APDM water infrastructure projects. This study fills the knowledge gap by conducting several studies that may support public and private utilities in improving the delivery of their APDM water infrastructure projects. First, APDM implementation practices for water infrastructure projects are identified by assessing the state of practice, particularly during project procurement and execution. Second, DB project administration best practices are determined to support utilities seeking to add DB to their organization’s project delivery toolbox. Third, a pioneering web-based project delivery method decision-support tool was developed to aid utilities in selecting the appropriate delivery method for their water project. Finally, project-specific factors and attributes that impact project delivery performance are investigated through exploratory modeling and analysis. The study collected data on 75 completed treatment plant projects, conducted interviews with ten utilities that successfully deliver their water projects using DB, and worked closely with several industry experts through industry workshops and panels. Key findings related to water infrastructure project delivery revealed in this study included: (1) guaranteed maximum price (GMP) is the preferred compensation type for APDM projects; (2) utilities statistically having the lowest comfort level with delivering CMAR projects; (3) qualifications-based procurement is an effective DB project delivery practice; (4) the identification of 13 key project delivery method selection factors; and (5) the three highest predictors that impact unit cost performance are project complexity, project team chemistry and communication, and project size.
ContributorsFeghaly, Jeffrey (Author) / El Asmar, Mounir (Thesis advisor) / Ariaratnam, Samuel (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2020
130969-Thumbnail Image.png
Description
This Fantasyland expansion is a proposed 302,000 square foot development west of Harbor Boulevard and south of the Parade Route. This plot of land caught the eye of Performance Imagineering, the latest and greatest firm in theme park consulting, as it is currently home to Autopia, a massive drivable car

This Fantasyland expansion is a proposed 302,000 square foot development west of Harbor Boulevard and south of the Parade Route. This plot of land caught the eye of Performance Imagineering, the latest and greatest firm in theme park consulting, as it is currently home to Autopia, a massive drivable car ride for guests. Although this large portion of land is currently considered part of Tomorrowland, this proposition suggests otherwise. With the exponential growth of action and adventure themed attractions in the park, it comes time to revive the original Disney themes of love and fantasy. This proposal does so by introducing princesses from some of Disney's most successful intellectual property of late, to the Disneyland Resort.
ContributorsTaylor, Gary Joseph (Author) / Parrish, Kristen (Thesis director) / Ariaratnam, Samuel (Committee member) / Construction Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
164638-Thumbnail Image.png
Description
Alaska has some of the richest mineral deposits on Earth and many of them remain untouched by humans. Exploration initiatives have the potential to greatly change “The Last Frontier’s” environment in the near future. These effects need to be considered now. There are many people chasing these deposits and with

Alaska has some of the richest mineral deposits on Earth and many of them remain untouched by humans. Exploration initiatives have the potential to greatly change “The Last Frontier’s” environment in the near future. These effects need to be considered now. There are many people chasing these deposits and with the use of new technologies, it has never been easier to access these remote locations. Alaska is called The Last Frontier because of its unforgiving climate and landscape and it is considered one of the few remaining places on earth that has been minimally touched by the modern age. One mineral deposit in particular that has been drawing attention lately is the Alaskan Pebble Mine. The Pebble Mine sits on top of a massive amount of precious minerals such as gold, copper, and molybdenum. Northern Dynasty Minerals Ltd., based out of Vancouver, Canada is the main driving force behind the Pebble Mine. This specific mine has been debated amongst The Environmental Protection Agency, The U.S. Army Corps of Engineers (USACE), and the U.S. Congress for multiple years. This mine has the potential for drastic impacts, not only on the environment, but also with the local and native Alaskans. The main issue with the Pebble Mine is that it is located in the Bristol Bay watershed which is home to nearly half the world's remaining wild sockeye salmon supply. This fishery employs thousands of workers, and brings in billions of dollars to the region every year. Heavy consideration must be given to the environment by the USACE when deciding on whether or not the Pebble Mine’s impact is reasonable.
ContributorsOwens, William (Author) / Deniger, Jack (Co-author) / Ariaratnam, Samuel (Thesis director) / El Asmar, Mounir (Committee member) / Barrett, The Honors College (Contributor) / Del E. Webb Construction (Contributor)
Created2022-05