Matching Items (270)
136284-Thumbnail Image.png
Description
Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival

Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival death certificates from 1954 to 1961, this study quantified the age-specific seasonal patterns, excess-mortality rates, and transmissibility patterns of the 1957 pandemic in Maricopa County, Arizona. By applying cyclical Serfling linear regression models to weekly mortality rates, the excess-mortality rates due to respiratory and all-causes were estimated for each age group during the pandemic period. The reproduction number was quantified from weekly data using a simple growth rate method and generation intervals of 3 and 4 days. Local newspaper articles from The Arizona Republic were analyzed from 1957-1958.
Results: Excess-mortality rates varied between waves, age groups, and causes of death, but overall remained low. From October 1959-June 1960, the most severe wave of the pandemic, the absolute excess-mortality rate based on respiratory deaths per 10,000 population was 17.85 in the elderly (≥65 years). All other age groups had extremely low excess-mortality and the typical U-shaped age-pattern was absent. However, relative risk was greatest (3.61) among children and young adolescents (5-14 years) from October 1957-March 1958, based on incidence rates of respiratory deaths. Transmissibility was greatest during the same 1957-1958 period, when the mean reproduction number was 1.08-1.11, assuming 3 or 4 day generation intervals and exponential or fixed distributions.
Conclusions: Maricopa County largely avoided pandemic influenza from 1957-1961. Understanding this historical pandemic and the absence of high excess-mortality rates and transmissibility in Maricopa County may help public health officials prepare for and mitigate future outbreaks of influenza.
ContributorsCobos, April J (Author) / Jehn, Megan (Thesis director) / Chowell-Puente, Gerardo (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136287-Thumbnail Image.png
Description
Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine

Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine has been notoriously difficult to produce. To overcome this, a vaccine using non-structural protein 3 (NS3) as a target to elicit a T cell specific immune response is thought to be a possible strategy for eliciting a protective immune response against hepatitis C infection. In this paper, a recombinant strain of measles virus (MV) that expresses HCV NS3 protein was analyzed. The replication fitness of this recombinant virus also indicates that this construct replicates at a higher rate than parental measles strain. It is also demonstrated through western blot analysis of protein expression and immunofluorescence that this recombinant virus expresses both the inserted HCV NS3 protein, as well as native measles proteins.
ContributorsWoell, Dana Marie (Author) / Reyes del Valle, Jorge (Thesis director) / Nickerson, Cheryl (Committee member) / Julik, Emily (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
Description
Microwave hydrolysis of egg-white lysozyme was optimized using 1H liquid-state nuclear magnetic resonance (NMR) spectroscopy experiments for amino acid analysis (AAA). Time held under microwave hydrolysis was arrayed for 2, 4, 6, 8, 10, and 15 minutes. Correlations from gCOSY 2D NMR experiments combined with 1H assignments in the one-dimensional

Microwave hydrolysis of egg-white lysozyme was optimized using 1H liquid-state nuclear magnetic resonance (NMR) spectroscopy experiments for amino acid analysis (AAA). Time held under microwave hydrolysis was arrayed for 2, 4, 6, 8, 10, and 15 minutes. Correlations from gCOSY 2D NMR experiments combined with 1H assignments in the one-dimensional chemical shift spectra identified 18 of the 20 amino acids found in lysozyme. Comparison with Uniprot database amino acid composition values revealed the optimal microwave hydrolysis time lies between 4 and 6 minutes. Identification of lysozyme was confirmed with the ExPASy online database search tool AACompIdent. The microwave hydrolysis procedure presented is a simple analytical technique allowing quick and reliable sample preparation in less than one hour that requires no separation or derivation of amino acids residues prior to detection.
ContributorsEdwards, Maximillian Ashur (Author) / Yarger, Jeff (Thesis director) / Marzke, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136416-Thumbnail Image.png
Description
The aim of this paper is to investigate a few of the primary pillars of the Paleo diet for evidence to either support or refute their efficacy and safety such that a more educated decision can be made by lay-persons who are wishing to make improvements in their overall health

The aim of this paper is to investigate a few of the primary pillars of the Paleo diet for evidence to either support or refute their efficacy and safety such that a more educated decision can be made by lay-persons who are wishing to make improvements in their overall health via dieting. To accomplish this goal a basic overview of The Paleo Diet (also known to some as the Paleolithic Nutrition Movement) is given based on the writings of Dr. Loren Cordain in his book The Paleo Diet. Next, analyses of a few of the basic characteristics of the diet are presented based on an in-depth literature review that was performed using PubMed (Medline), Cochrane and Google Scholar databases until March of 2015. The findings of this investigation raise concerns with respect to the safety of some of the main principles of the diet such as its high protein, low carbohydrate content that is relies heavily on the consumption of red meat. The current literature on what the diet of the people of the Paleolithic era may have consisted of is also presented in order to shed light on the origins of the diet and see how closely the diet prescribed The Paleo Diet meshes with the most current data on the topic.
ContributorsMurphy, Daniel Jordan (Author) / Morse, Lisa (Thesis director) / Lespron, Christy (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136421-Thumbnail Image.png
Description
Bacteria play a vital role in the world ecosystem, more importantly human health and disease. The capability to differentiate and identify these microorganisms serves as an important research objective. In past years, separations-based approaches have served as a way to observe and identify bacteria based on their characteristics. Gradient insulator

Bacteria play a vital role in the world ecosystem, more importantly human health and disease. The capability to differentiate and identify these microorganisms serves as an important research objective. In past years, separations-based approaches have served as a way to observe and identify bacteria based on their characteristics. Gradient insulator dielectrophoresis (g-iDEP) provides benefits in identifying serotypes of a single species with precise separation. Separation of Staphylococcus epidermidis in a single g-iDEP microchannel is conducted exploiting their electrophoretic and electrokinetic properties. The cells were captured and concentrated at gates with interacting forces within the microchannel to clearly distinguish between the two strains. These results provide support for g-iDEP serving as a separating method and, furthermore, future clinical applications.
ContributorsDavis, Paige Elizabeth (Author) / Hayes, Mark (Thesis director) / Borges, Chad (Committee member) / Jones, Paul (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2015-05
136426-Thumbnail Image.png
Description
This study investigates how health care provider interactions with female LGB patients are related to the health disparities affecting LGB women. The study uses a combination of a rigorous literature review and interviews with LGB women (and one genderqueer individual) between the ages of 18-22. Issues related to heterosexism were

This study investigates how health care provider interactions with female LGB patients are related to the health disparities affecting LGB women. The study uses a combination of a rigorous literature review and interviews with LGB women (and one genderqueer individual) between the ages of 18-22. Issues related to heterosexism were found to be a particularly prevalent cause in the creation of tension or mistrust in LGB women's relationships with providers. Relationships with providers that were negatively affected by heterosexist norms were found to have a detrimental effect on how LGB women utilize healthcare services.
ContributorsArnold, Michelle Marie (Author) / Weitz, Rose (Thesis director) / Ingram-Waters, Mary (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136317-Thumbnail Image.png
Description
Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular

Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular mechanisms that underlie function are not yet clear. Knowledge of these properties could have implications for medicine and physiological understanding of sensation and signaling. Structures of TRP channels have proven challenging to solve, but recent Cryoelectron microscopy (Cryo-EM) structures of TRPV1 provide a basis for homology-based modeling of TRP channel structures and interactions. I present an ensemble of 11,000 Rosetta computational homology models of TRPM8 based on the recent Cryo-EM apo structure of TRPV1 (PDB code:3J5P). Site-directed mutagenesis has provided clues about which residues are most essential for modulatory ligands to bind, so the models presented provide a platform to investigate the structural basis of TRPM8 ligand modulation complementary to existing functional and structural information. Menthol and icilin appear to interact with interfacial residues in the sensor domain (S1-S4). One consensus feature of these sites is the presence of local contacts to the S4 helix, suggesting this helix may be mechanistically involved with the opening of the pore. Phosphatidylinositol 4,5-bisphosphate (PIP2)has long been known to interact with the C-terminus of TRPM8, and some of the homology models contain plausible binding pockets where PIP2 can come into contact with charged residues known to be essential for PIP2 modulation. Future in silico binding experiments could provide testable hypothesis for in vitro structural studies, and experimental data (e.g. distance constraints from electron paramagnetic resonance spectroscopy [EPR]) could further refine the models.
ContributorsHelsell, Cole Vincent Maher (Author) / Van Horn, Wade (Thesis director) / Wang, Xu (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136321-Thumbnail Image.png
Description
Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in

Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. These commercial assays measure reactivity against the immunodominant N antigen and can have a false negative rates of 20-30%. Centralized testing by clinical labs can delay rapid screening in an outbreak setting. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to five individual MV proteins representing 85% of the measles proteome. Methods: MV genes were subcloned into pANT_cGST vector to generate C-terminal GST fusion proteins. Single MV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured using a sandwich ELISA for GST expression using relative light units (RLUs) as readouts. Single MV antigens were used as bait to determine the IgG-dependent reactivity in 12 serum samples obtained from immunized animals with previously determined neutralization titer (NT) and the correlation between NT and ELISA reactivity was determined. Results: Protein expression of five measles genes of interest, M, N, F, H, and L, was measured. L exhibited the strongest protein expression with an average RLU value of 4.34 x 10^9. All proteins were expressed at least 50% greater than control (2.33 x 10^7 RLU). As expected, reactivity against the N was the highest, followed by reactivity against M, F, H and L. The best correlation with NT titer was reactivity against F (R^2 = 0.62). Conclusion: These data indicate that the expression of single MV genes M, N, F, H, and L are suitable antigens for serologic capture analysis of measles immunity.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis director) / Reyes del Valle, Jorge (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136322-Thumbnail Image.png
Description
Rubisco is a very important protein which catalyzes the addition of CO2 to ribulose-1,5-bisphosphate (RuBP) to form two molecules of 3-phosphoglycerate in photosynthesis. Rubisco activase is the protein which functions to uninhibit Rubisco, however proof of a physical interaction has never been shown. A possible method for determining

Rubisco is a very important protein which catalyzes the addition of CO2 to ribulose-1,5-bisphosphate (RuBP) to form two molecules of 3-phosphoglycerate in photosynthesis. Rubisco activase is the protein which functions to uninhibit Rubisco, however proof of a physical interaction has never been shown. A possible method for determining the interaction of the two proteins is by Förster Resonance Energy Transfer (FRET) based analysis of the two proteins. Attempts to get a FRET signal from these two proteins have been unsuccessful. To get better results, Ficoll 70, a crowding agent, was used. Analysis suggests that Ficoll 70 does not affect the fluorescence of Alexa-fluor 488 and Alexa-fluor 647 used to label the two proteins. Further analysis also suggests that while the Alexa label on Rubisco activase does not affect the ATPase activity of the protein, the protein also does not have a high rate of ATP turnover.
ContributorsTichacek, Laura Renee (Author) / Wachter, Rebekka (Thesis director) / Levitus, Marcia (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136336-Thumbnail Image.png
Description
Hydrogen has the potential to be a highly efficient fuel source. Its current production via steam reformation of natural gas, however, consumes a large amount of energy and gives off carbon dioxide. A newer method has since surfaced: using a microorganism's metabolism to drive hydrogen production. In this study, the

Hydrogen has the potential to be a highly efficient fuel source. Its current production via steam reformation of natural gas, however, consumes a large amount of energy and gives off carbon dioxide. A newer method has since surfaced: using a microorganism's metabolism to drive hydrogen production. In this study, the conditions for maximum hydrogen production in Heliobacterium modesticaldum were identified and assessed. The cells were grown under varying conditions and their headspaces were sampled using a gas chromatogram to measure the amount of accumulated hydrogen during each condition. Two cell batches were grown under nitrogen-fixing conditions (-NH4+), while the other two cell batches were grown under non-nitrogen-fixing conditions (+NH4+). The headspaces were then exchanged with either nitrogen (N2) or argon (Ar2). It was found that the condition for which the most hydrogen was produced was when the cells were grown under nitrogen-fixing conditions and the headspace was exchanged with argon. These results suggest that most of Heliobacteria modesticaldum's hydrogen production is due to nitrogenase activity rather than hydrogenase activity. Further research is recommended to quantify the roles of nitrogenase, [NiFe] hydrogenase, and [FeFe] hydrogenase.
ContributorsMcmahon, Savanah Dior (Author) / Redding, Kevin (Thesis director) / Ghirlanda, Giovanna (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Music (Contributor)
Created2015-05