Matching Items (131)
148190-Thumbnail Image.png
Description

When examining the medical doctrines of previous empires, they reveal the influence of religion, societal attitudes, and the historical context that influenced the scholars that penned them. The advancements during the Islamic Golden age can be seen in the field of medicine, which had the Greco-Roman medical corpus as their

When examining the medical doctrines of previous empires, they reveal the influence of religion, societal attitudes, and the historical context that influenced the scholars that penned them. The advancements during the Islamic Golden age can be seen in the field of medicine, which had the Greco-Roman medical corpus as their foundation and the source of the theory of the four humors and anatomical beliefs. This paper will analyze the effect of cultural, societal, and historical influences on the medical doctrines of Muslim medieval physicians in the Golden Age and the works of the Roman physician Galen, and demonstrate how these effects result in similarities and differences in medical practice and the understanding of disease and anatomy. Due to translation efforts that were supported by religious views on the accumulation of knowledge and the efforts of the Abbasid empire, resultant acceptance of the theory of the four humors and anatomical doctrines is observed in the treatment and perception of disease, which would consist of this paper's focus on surgery, diet therapy and associations with nature. However, with further analysis of the extent of this acceptance and the findings in the Islamic medical doctrines, the differences in experimental methods, religious interpretations, and cultural attitudes shows a deviation from the Galenic tradition, with the second set of the paper's focus being human dissection, cause of disease, and experimentation. The purpose of this research is to demonstrate the impact of religion, societal attitudes, culture and the accepted paradigm on the practice of medicine and the study of anatomy, and what would cause a challenge against the legacy of Galen.

Created2021-05
136157-Thumbnail Image.png
Description
Honey bee (Apis mellifera) colonies have experienced substantial losses due to colony collapse disorder (CCD) since the first officially reported cases in 2006. Many factors have been implicated in CCD, including pests, pathogens, malnutrition, and pesticide use, but no correlation has been found between a single factor and the occurrence

Honey bee (Apis mellifera) colonies have experienced substantial losses due to colony collapse disorder (CCD) since the first officially reported cases in 2006. Many factors have been implicated in CCD, including pests, pathogens, malnutrition, and pesticide use, but no correlation has been found between a single factor and the occurrence of CCD. Fungicides have received less research attention compared to insecticides, despite the fact that fungicide application coincides with bloom and the presence of bees. Pristine fungicide is widely used in agriculture and is commonly found as a residue in hives. Several studies have concluded that Pristine can be used without harming bees, but reports of brood loss following Pristine application continue to surface across the country. The primary objectives of this study were to determine whether Pristine causes an aversive gustatory response in bees and whether consumption of an acute dose affects responsiveness to sucrose. An awareness of how foragers interact with contaminated food is useful to understand the likelihood that Pristine is ingested and how that may affect bees' ability to evaluate floral resources. Our results indicated that Pristine has no significant effect on gustatory response or sucrose responsiveness. There was no significant difference between bee responses to Pristine contaminated sucrose and sucrose alone, and no significant effect of Pristine on sucrose responsiveness. These results indicate that honey bees do not have a gustatory aversion to Pristine. A lack of aversion means that honey bees will continue collecting contaminated resources and dispersing them throughout the colony where it can affect brood and clean food stores.
ContributorsMcHugh, Cora Elizabeth (Co-author) / Jernigan, Christopher (Co-author, Committee member) / Burden, Christina (Co-author) / DeGrandi-Hoffman, Gloria (Co-author) / Smith, Brian (Thesis director) / Fewell, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / School of Art (Contributor)
Created2015-05
135879-Thumbnail Image.png
Description
This study illustrates the abilities of the honeybee, Apis mellifera, to learn and differentiate between patterns solely off their spatial frequencies. Patterns were chosen based off of calculations derived from the measurements of the physical construction of the apposition compound eye, which led to predictions of what the bees could

This study illustrates the abilities of the honeybee, Apis mellifera, to learn and differentiate between patterns solely off their spatial frequencies. Patterns were chosen based off of calculations derived from the measurements of the physical construction of the apposition compound eye, which led to predictions of what the bees could theoretically see. The hypothesis was then that bees would have a visual threshold where patterns with spatial frequencies that fall below this line should be easily distinguishable, and patterns above the threshold would have scores that mimic if the bees made choices randomly. There were 9 patterns tested, all with different spatial frequencies and in the colors of black, white, and gray. The bees were tested on their learning and pattern differentiation abilities with 10 pattern comparisons, with the lower frequency of the two being associated with an unscented sucrose solution reward. The results were surprising in that the previous studies pointing towards this visual threshold were inaccurate because of some of the patterns being learning in an intermediate ability. These intermediate scores suggest that the calculations predicting what the bees could see clearly were slightly wrong because it was more likely that the bees saw those images in more of a blur, which resulted in their intermediate score. Honeybees have served as a useful model organisms over the decades with studying learning involving visual information. This study lacked in its total numbers of trials and bees tested, which could have led to incomplete results, and this showing of an intermediate score and ability. Future studies should continue in order to advance this understanding of a perceptually and cognitively advance processing animal.
ContributorsBalsino, Brandon Bartholomew (Author) / Harrison, Jon (Thesis director) / Smith, Brian (Committee member) / Duell, Meghan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135604-Thumbnail Image.png
Description
Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been

Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been found to substitute for sulfur in proteins, which can be toxic to these animals, and cause oxidative stress (Quinn et al., 2007). Using the previous research done with acute exposure to organic and inorganic selenium compounds, we hypothesized that the inorganic sodium selenate would significantly decrease learning and memory recall for both chronic and acute exposure. We also hypothesized that the consumption of organic methylseleno-L-cysteine by honey bees would decrease learning and memory recall for both the chronic and acute exposure. We further hypothesized that protein carbonyl content would be increased due to oxidative damage caused by selenium in both the sodium selenate and the methylseleno-L-cysteine treatment groups, but that the inorganic selenium compound would increase the carbonyl content more than the methylseleno-L-cysteine. To run the experiments, three tents outside had two colonies in each tent. One tent contained the sodium selenate group, another had the sucrose control, and one contained the methylseleno-L-cysteine group. The treatment groups were fed selenium in their sucrose feeders. The first part of the experiment was training the bees by using proboscis extension response (PER) to teach them to extend their proboscis to the rewarded odor and not to the unrewarded odor. This was done by pairing the rewarded odor with a sucrose reward and not pairing it with the unrewarded odor. Then their short-term and long-term memory recall was tested. The second part of the experiment was checking for oxidative damage by measuring the protein carbonyl content in the bees. Three boxes were set up with the same three treatment groups as used in the tents. The treatment group bees were exposed to selenium in the sucrose feeders and in the pollen patties. After one week, the living bees were removed and frozen. They were then homogenized to extract protein. The first assay run was the protein content assay to establish a standard protein concentration for samples. Then a protein carbonyl assay was run, to determine the protein carbonyl content. Overall, the experiment found that exposure to selenium negatively impacted honey bees learning and memory recall significantly. Chronic exposure to the inorganic selenate reduced the bees' long-term memory abilities to differentiate between odors. With methylseleno-L-cysteine, it had no significant effect for the chronic exposure, but for the acute exposure, it had a significant impairment on their abilities to distinguish between the rewarded and unrewarded odors during conditioning. Our results showed that from our experiment there appeared to be no significant effect of selenium exposure on the increase of carbonylation content in the different treatment groups. This is most likely due to the fact the carbonyl content was not detectable because the protein concentration was low in the samples (approximately 3.5 mg/mL).
ContributorsWinski, Alexandra (Co-author) / Winski, Brandon (Co-author) / Smith, Brian (Thesis director) / Harrison, Jon (Committee member) / Burden, Christina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135609-Thumbnail Image.png
Description
Zeolitic Imidazolate Frameworks (ZIFs) are a promising technology for the separation of gases. ZIFs represent a type of hybrid material that is a subset of metal organic frameworks while displaying zeolite properties. ZIFs have tunable pore metrics, high thermal stability, and large surface areas giving them advantages over traditional zeolites.

Zeolitic Imidazolate Frameworks (ZIFs) are a promising technology for the separation of gases. ZIFs represent a type of hybrid material that is a subset of metal organic frameworks while displaying zeolite properties. ZIFs have tunable pore metrics, high thermal stability, and large surface areas giving them advantages over traditional zeolites. The experiment sought to determine the flux of hexane vapor through ZIF-68 with Fourier Transform Infrared Spectroscopy (FTIR) mapping. FTIR mapping was used to obtain three spectra per crystal and the concentration gradient was analyzed to determine the flux. ZIF-68 was completely stable when loaded with hexane and exposed to the atmosphere. There was no hexane diffusion out of the crystal. As a result, ZIF-68 was heated to 50°C to increase diffusion and calculate the flux. ZIF-68 adhered to Knudsen Diffusion, and the flux was calculated to be 2.00*10-5 kg mol/s*m2. The small flux occurred because almost no concentration gradient was obtained through the crystal. It was hypothesized that the resistance in the crystal was substantially lower than the resistance at the boundary layer, which would have caused a small concentration gradient. Using film mass transfer theory, the resistance inside the crystal was found to be 1200 times lower than the resistance at the boundary layer confirming the hypothesis.
ContributorsSigrist, Dallas Dale (Author) / Lin, Jerry (Thesis director) / Wang, Liping (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148448-Thumbnail Image.png
Description

This paper discusses the theoretical approximation and attempted measurement of the quantum <br/>force produced by material interactions though the use of a tuning fork-based atomic force microscopy <br/>device. This device was built and orientated specifically for the measurement of the Casimir force as a <br/>function of separation distance using a

This paper discusses the theoretical approximation and attempted measurement of the quantum <br/>force produced by material interactions though the use of a tuning fork-based atomic force microscopy <br/>device. This device was built and orientated specifically for the measurement of the Casimir force as a <br/>function of separation distance using a piezo actuator for approaching and a micro tuning fork for the <br/>force measurement. This project proceeds with an experimental measurement of the ambient Casmir force <br/>through the use of a tuning fork-based AFM to determine its viability in measuring the magnitude of the <br/>force interaction between an interface material and the tuning fork probe. The ambient measurements <br/>taken during the device’s development displayed results consistent with theoretical approximations, while<br/>demonstrating the capability to perform high-precision force measurements. The experimental results<br/>concluded in a successful development of a device which has the potential to measure forces of <br/>magnitude 10−6 to 10−9 at nanometric gaps. To conclude, a path to material analysis using an approach <br/>stage, alternative methods of testing, and potential future experiments are speculated upon.

ContributorsMulkern, William Michael (Author) / Wang, Liping (Thesis director) / Kwon, Beomjin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148495-Thumbnail Image.png
Description

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that near-field radiation generates greater heat flux that conventional radiation governed by Planck’s law with maximum for blackbodies. Working with a phase shift material such as VO2 enables a switch-like effect to occur where the total amount of heat flux fluctuates as VO2 transitions from a metal to an insulator. In this paper, the theoretical heat flux and near-field radiation effect are modeled for a set-up of VO2 and SiO2 layers separated by different vacuum gaps. In addition, a physical experimental set-up is validated for future near-field radiation experiments.

ContributorsSluder, Nicole (Author) / Wang, Liping (Thesis director) / Wang, Ropert (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130407-Thumbnail Image.png
Description
Lonsdaleite, also called hexagonal diamond, has been widely used as a marker of asteroidal impacts. It is thought to play a central role during the graphite-to-diamond transformation, and calculations suggest that it possesses mechanical properties superior to diamond. However, despite extensive efforts, lonsdaleite has never been produced or described as

Lonsdaleite, also called hexagonal diamond, has been widely used as a marker of asteroidal impacts. It is thought to play a central role during the graphite-to-diamond transformation, and calculations suggest that it possesses mechanical properties superior to diamond. However, despite extensive efforts, lonsdaleite has never been produced or described as a separate, pure material. Here we show that defects in cubic diamond provide an explanation for the characteristic d-spacings and reflections reported for lonsdaleite. Ultrahigh-resolution electron microscope images demonstrate that samples displaying features attributed to lonsdaleite consist of cubic diamond dominated by extensive {113} twins and {111} stacking faults. These defects give rise to nanometre-scale structural complexity. Our findings question the existence of lonsdaleite and point to the need for re-evaluating the interpretations of many lonsdaleite-related fundamental and applied studies.
Created2014-11-01
134493-Thumbnail Image.jpg
Description
Fruit flies show a strong attraction to fruit odors. Most fruit odors, including strawberry scent, are complex multimolecular mixtures comprised of many chemically distinct constituents. How animals are able to process these mixtures and derive behaviorally relevant information is largely unknown. A new procedure was created to test odor

Fruit flies show a strong attraction to fruit odors. Most fruit odors, including strawberry scent, are complex multimolecular mixtures comprised of many chemically distinct constituents. How animals are able to process these mixtures and derive behaviorally relevant information is largely unknown. A new procedure was created to test odor preference for Heisenberg canton-s strain of Drosophila melanogaster. 30 flies were cold anesthetized at 4.2°C for 30 minutes and then placed in a testing arena. After acclimating for 45 minutes, the flies were exposed to two sources of air, one with ripe strawberry odor and one with only humidified air. Images were captured every minute for an hour and a preference index was calculated for every 10th image. The Drosophila had a positive average preference for the strawberry odor. Five out of six trials showed a general increase in odor preference over the course of the trial. While there was a generally positive trend for average preference over time, there was not a significant increase in average odor preference from time 1 to time 60. The data indicates that Drosophila show a preference for strawberry odor over humidified air, and we propose to extend this test to investigate how Drosophila process and react to complex odors and their chemical constituents.
ContributorsSteinmetz, Kyle J (Author) / Smith, Brian (Thesis director) / Jernigan, Chris (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134503-Thumbnail Image.png
Description
Recent data suggests that olfactory input is important for antennal lobe development in honey bees. Chronic association of a single odor to food resources during crucial stages of development results in delayed antennal lobe development for mature foraging bees. The antennal lobes of these bees instead closely resemble an immature

Recent data suggests that olfactory input is important for antennal lobe development in honey bees. Chronic association of a single odor to food resources during crucial stages of development results in delayed antennal lobe development for mature foraging bees. The antennal lobes of these bees instead closely resemble an immature network observed in young, newly emerged bees. Using an odor stimuli variance assay, learning and memory tests can be used to explore how well honey bees discriminate single odors within complex odor mixtures. Here we are validating two different odor mixtures, a Brassica rapa floral blend and a second replicate mixture composed of common molecularly dissimilar odors. Odors in each mixture are either held constant or varied in concentration over 16 conditioning trials. Subsequent memory tests are performed two hours later to observe the ability of bees to distinguish and recognize specific odor components in each mixture. So far in our assay we find high rates of generalization for both odor mixtures. In general, more bees responded to all odors in the replicate treatment group over the Brassica treatment group. Additionally, bees in the Brassica treatment group did not respond to the target odor. More data is being collected to validate this assay. In future studies, I propose to apply this behavioral assay to bees with an altered olfactory developmental in order to see the functional impacts of this chronic odor association treatment.
ContributorsHalby, Rachael (Author) / Smith, Brian (Thesis director) / Jernigan, Christopher (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05