Matching Items (110)
149679-Thumbnail Image.png
Description
Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's

Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's pythons (Antaresia childreni). I demonstrated that tight coiling detrimentally creates a hypoxic developmental environment that is alleviated by periodic postural adjustments. Alternatively, maternal postural adjustments detrimentally elevate rates of egg water loss relative to tight coiling. Despite ventilating postural adjustments, the developmental environment becomes increasingly hypoxic near the end of incubation, which reduces embryonic metabolism. I further demonstrated that brooding-induced hypoxia detrimentally affects offspring size, performance, locomotion, and behavior. Thus, parental care in A. childreni comes at a cost to offspring due to intra-offspring tradeoffs (i.e., those that reflect competing offspring needs, such as water balance and respiration). Next, I showed that, despite being unable to intrinsically produce body heat, A. childreni adjust egg-brooding behavior in response to shifts in nest temperature, which enhances egg temperature (e.g., reduced tight coiling during nest warming facilitated beneficial heat transfer to eggs). Last, I demonstrated that A. childreni adaptively adjust their egg-brooding behaviors due to an interaction between nest temperature and humidity. Specifically, females' behavioral response to nest warming was eliminated during low nest humidity. In combination with other studies, these results show that female pythons sense environmental temperature and humidity and utilize this information at multiple time points (i.e., during gravidity [egg bearing], at oviposition [egg laying], and during egg brooding) to enhance the developmental environment of their offspring. This research demonstrates that maternal behaviors that are simple and subtle, yet easily quantifiable, can balance several critical developmental variables (i.e., thermoregulation, water balance, and respiration).
ContributorsStahlschmidt, Zachary R (Author) / DeNardo, Dale F (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Rutowski, Ronald (Committee member) / Walsberg, Glenn (Committee member) / Arizona State University (Publisher)
Created2011
149829-Thumbnail Image.png
Description
Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research,

Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research, a new three dimensional model for tolerance transfer in manufacturing process planning is presented that is user friendly in the sense that it is built upon the Coordinate Measuring Machine (CMM) readings that are readily available in any decent manufacturing facility. This model can take care of datum reference change between non orthogonal datums (squeezed datums), non-linearly oriented datums (twisted datums) etc. Graph theoretic approach based upon ACIS, C++ and MFC is laid out to facilitate its implementation for automation of the model. A totally new approach to determining dimensions and tolerances for the manufacturing process plan is also presented. Secondly, a new statistical model for the statistical tolerance analysis based upon joint probability distribution of the trivariate normal distributed variables is presented. 4-D probability Maps have been developed in which the probability value of a point in space is represented by the size of the marker and the associated color. Points inside the part map represent the pass percentage for parts manufactured. The effect of refinement with form and orientation tolerance is highlighted by calculating the change in pass percentage with the pass percentage for size tolerance only. Delaunay triangulation and ray tracing algorithms have been used to automate the process of identifying the points inside and outside the part map. Proof of concept software has been implemented to demonstrate this model and to determine pass percentages for various cases. The model is further extended to assemblies by employing convolution algorithms on two trivariate statistical distributions to arrive at the statistical distribution of the assembly. Map generated by using Minkowski Sum techniques on the individual part maps is superimposed on the probability point cloud resulting from convolution. Delaunay triangulation and ray tracing algorithms are employed to determine the assembleability percentages for the assembly.
ContributorsKhan, M Nadeem Shafi (Author) / Phelan, Patrick E (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Farin, Gerald (Committee member) / Roberts, Chell (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2011
150086-Thumbnail Image.png
Description
Detecting anatomical structures, such as the carina, the pulmonary trunk and the aortic arch, is an important step in designing a CAD system of detection Pulmonary Embolism. The presented CAD system gets rid of the high-level prior defined knowledge to become a system which can easily extend to detect other

Detecting anatomical structures, such as the carina, the pulmonary trunk and the aortic arch, is an important step in designing a CAD system of detection Pulmonary Embolism. The presented CAD system gets rid of the high-level prior defined knowledge to become a system which can easily extend to detect other anatomic structures. The system is based on a machine learning algorithm --- AdaBoost and a general feature --- Haar. This study emphasizes on off-line and on-line AdaBoost learning. And in on-line AdaBoost, the thesis further deals with extremely imbalanced condition. The thesis first reviews several knowledge-based detection methods, which are relied on human being's understanding of the relationship between anatomic structures. Then the thesis introduces a classic off-line AdaBoost learning. The thesis applies different cascading scheme, namely multi-exit cascading scheme. The comparison between the two methods will be provided and discussed. Both of the off-line AdaBoost methods have problems in memory usage and time consuming. Off-line AdaBoost methods need to store all the training samples and the dataset need to be set before training. The dataset cannot be enlarged dynamically. Different training dataset requires retraining the whole process. The retraining is very time consuming and even not realistic. To deal with the shortcomings of off-line learning, the study exploited on-line AdaBoost learning approach. The thesis proposed a novel pool based on-line method with Kalman filters and histogram to better represent the distribution of the samples' weight. Analysis of the performance, the stability and the computational complexity will be provided in the thesis. Furthermore, the original on-line AdaBoost performs badly in imbalanced conditions, which occur frequently in medical image processing. In image dataset, positive samples are limited and negative samples are countless. A novel Self-Adaptive Asymmetric On-line Boosting method is presented. The method utilized a new asymmetric loss criterion with self-adaptability according to the ratio of exposed positive and negative samples and it has an advanced rule to update sample's importance weight taking account of both classification result and sample's label. Compared to traditional on-line AdaBoost Learning method, the new method can achieve far more accuracy in imbalanced conditions.
ContributorsWu, Hong (Author) / Liang, Jianming (Thesis advisor) / Farin, Gerald (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
147559-Thumbnail Image.png
Description

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and fine motor control, as being strong predictors of the outcome of aggression. Here, I combined morphological and behavioral data to discover how these features interact during aggressing interactions in male virile crayfish, Faxonius virilis. I predicted that individual variation in behavioral skill for decision making (i.e., number of strikes thrown), would determine the outcome of contest success in addition to morphological measurements (e.g. body size, relative claw size). To evaluate this prediction, I filmed staged territorial interactions between male F. virilis and later analyzed trial behaviors (e.g. strike, pinches, and bout time) and aggressive outcomes. I found very little support for skill to predict win/loss outcome in trials. Instead, I found that larger crayfish engaged in aggression for longer compared to smaller crayfish, but that larger crayfish did not engage in a greater number of claw strikes or pinches when controlling for encounter duration. Future studies should continue to investigate the role of skill, by using finer-scale techniques such as 3D tracking software, which could track advanced measurements (e.g. speed, angle, and movement efficiency). Such studies would provide a more comprehensive understanding of the relative influence of fighting skill technique on territorial contests.

ContributorsNguyen, Phillip Huy (Author) / Angilletta, Michael (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152370-Thumbnail Image.png
Description
Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models.

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal flattening algorithm and various software tools compiled specifically for processing and examining retinotopic data. Three conformal flattening algorithms were implemented and evaluated for speed and how well they preserve the conformal metric. All three algorithms performed well in preserving the conformal metric but the speed and stability of the algorithms varied. The software framework performed correctly on actual retinotopic data collected using the standard travelling-wave experiment. Preliminary analysis of the Beltrami coefficient for the early data set shows that selected regions of V1 that contain reasonably smooth eccentricity and polar angle gradients do show significant local conformality, warranting further investigation of this approach for analysis of early and higher visual cortex.
ContributorsTa, Duyan (Author) / Wang, Yalin (Thesis advisor) / Maciejewski, Ross (Committee member) / Wonka, Peter (Committee member) / Arizona State University (Publisher)
Created2013
152300-Thumbnail Image.png
Description
In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set

In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set of 3D morphological differences in the corpus callosum between two groups of subjects. The CCs are segmented from whole brain T1-weighted MRI and modeled as 3D tetrahedral meshes. The callosal surface is divided into superior and inferior patches on which we compute a volumetric harmonic field by solving the Laplace's equation with Dirichlet boundary conditions. We adopt a refined tetrahedral mesh to compute the Laplacian operator, so our computation can achieve sub-voxel accuracy. Thickness is estimated by tracing the streamlines in the harmonic field. We combine areal changes found using surface tensor-based morphometry and thickness information into a vector at each vertex to be used as a metric for the statistical analysis. Group differences are assessed on this combined measure through Hotelling's T2 test. The method is applied to statistically compare three groups consisting of: congenitally blind (CB), late blind (LB; onset > 8 years old) and sighted (SC) subjects. Our results reveal significant differences in several regions of the CC between both blind groups and the sighted groups; and to a lesser extent between the LB and CB groups. These results demonstrate the crucial role of visual deprivation during the developmental period in reshaping the structural architecture of the CC.
ContributorsXu, Liang (Author) / Wang, Yalin (Thesis advisor) / Maciejewski, Ross (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
151689-Thumbnail Image.png
Description
Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I study the Alzheimer's Disease diagnosis problem using multi-modality neuroimaging data. In this dataset, not every subject has all data sources available, exhibiting an unique and challenging block-wise missing pattern. In the second application, I study the automatic annotation and retrieval of fruit-fly gene expression pattern images. Combined with the spatial information, sparse learning techniques can be used to construct effective representation of the expression images. In the third application, I present a new computational approach to annotate developmental stage for Drosophila embryos in the gene expression images. In addition, it provides a stage score that enables one to more finely annotate each embryo so that they are divided into early and late periods of development within standard stage demarcations. Stage scores help us to illuminate global gene activities and changes much better, and more refined stage annotations improve our ability to better interpret results when expression pattern matches are discovered between genes.
ContributorsYuan, Lei (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Committee member) / Xue, Guoliang (Committee member) / Kumar, Sudhir (Committee member) / Arizona State University (Publisher)
Created2013
151336-Thumbnail Image.png
Description
Over 2 billion people are using online social network services, such as Facebook, Twitter, Google+, LinkedIn, and Pinterest. Users update their status, post their photos, share their information, and chat with others in these social network sites every day; however, not everyone shares the same amount of information. This thesis

Over 2 billion people are using online social network services, such as Facebook, Twitter, Google+, LinkedIn, and Pinterest. Users update their status, post their photos, share their information, and chat with others in these social network sites every day; however, not everyone shares the same amount of information. This thesis explores methods of linking publicly available data sources as a means of extrapolating missing information of Facebook. An application named "Visual Friends Income Map" has been created on Facebook to collect social network data and explore geodemographic properties to link publicly available data, such as the US census data. Multiple predictors are implemented to link data sets and extrapolate missing information from Facebook with accurate predictions. The location based predictor matches Facebook users' locations with census data at the city level for income and demographic predictions. Age and relationship based predictors are created to improve the accuracy of the proposed location based predictor utilizing social network link information. In the case where a user does not share any location information on their Facebook profile, a kernel density estimation location predictor is created. This predictor utilizes publicly available telephone record information of all people with the same surname of this user in the US to create a likelihood distribution of the user's location. This is combined with the user's IP level information in order to narrow the probability estimation down to a local regional constraint.
ContributorsMao, Jingxian (Author) / Maciejewski, Ross (Thesis advisor) / Farin, Gerald (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2012
151342-Thumbnail Image.png
Description
Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus

Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus hesperus, is a medically-important pest species that often forms dense urban subpopulations (i.e., infestations) relative to the low-density subpopulations found throughout undisturbed, desert habitat. Here, I employ field and laboratory studies to examine the population ecology and stoichiometry of this urban pest to increase our understanding of the mechanisms underlying its success. The population ecology of ten black widow subpopulations spread across metropolitan Phoenix, AZ was examined during the peak breeding season (June-August). This study revealed that arthropod prey abundance, female mass and population density of females showed significant spatial variation across the ten subpopulations. Additionally, prey abundance and foraging success, measured as the number of carcasses found in webs, were a strong determinant of female mass and population density within each subpopulation. To test the mechanisms that drive black widow infestations, I used ecological stoichiometry to examine the nutrient (nitrogen and phosphorus) composition of spiders and arthropod prey from urban habitat, desert habitat and a laboratory diet regime. These studies revealed that (1) spiders are more nutrient rich than cricket prey in the field, (2) spider subpopulations exhibit significant spatial variation in their nitrogen composition, (3) nutrient composition of urban spider subpopulations does not differ significantly from Sonoran desert subpopulations, (4) laboratory-reared spiders fed a diet of only laboratory-reared crickets are more nitrogen and phosphorus limited than field-captured spiders, and (5) cannibalism by laboratory-reared spiders alleviated phosphorus limitation, but not nitrogen limitation, when compared to field-captured spiders. This work highlights the need to examine the population ecology of species relationships, such as predator-prey dynamics, to fully understand the fecundity and population growth of urban pest species. Moreover, the integration of population ecology and stoichiometry illustrates the need to address mechanisms like nutrient limitation that may explain why urban pest populations thrive and native species diversity suffers following HIREC.
ContributorsTrubl, Patricia (Author) / Johnson, James C. (Thesis advisor) / Rutowski, Ronald (Thesis advisor) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
151402-Thumbnail Image.png
Description
Drosophila melanogaster, as an important model organism, is used to explore the mechanism which governs cell differentiation and embryonic development. Understanding the mechanism will help to reveal the effects of genes on other species or even human beings. Currently, digital camera techniques make high quality Drosophila gene expression imaging possible.

Drosophila melanogaster, as an important model organism, is used to explore the mechanism which governs cell differentiation and embryonic development. Understanding the mechanism will help to reveal the effects of genes on other species or even human beings. Currently, digital camera techniques make high quality Drosophila gene expression imaging possible. On the other hand, due to the advances in biology, gene expression images which can reveal spatiotemporal patterns are generated in a high-throughput pace. Thus, an automated and efficient system that can analyze gene expression will become a necessary tool for investigating the gene functions, interactions and developmental processes. One investigation method is to compare the expression patterns of different developmental stages. Recently, however, the expression patterns are manually annotated with rough stage ranges. The work of annotation requires professional knowledge from experienced biologists. Hence, how to transfer the domain knowledge in biology into an automated system which can automatically annotate the patterns provides a challenging problem for computer scientists. In this thesis, the problem of stage annotation for Drosophila embryo is modeled in the machine learning framework. Three sparse learning algorithms and one ensemble algorithm are used to attack the problem. The sparse algorithms are Lasso, group Lasso and sparse group Lasso. The ensemble algorithm is based on a voting method. Besides that the proposed algorithms can annotate the patterns to stages instead of stage ranges with high accuracy; the decimal stage annotation algorithm presents a novel way to annotate the patterns to decimal stages. In addition, some analysis on the algorithm performance are made and corresponding explanations are given. Finally, with the proposed system, all the lateral view BDGP and FlyFish images are annotated and several interesting applications of decimal stage value are revealed.
ContributorsPan, Cheng (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Farin, Gerald (Committee member) / Arizona State University (Publisher)
Created2012