Matching Items (128)
Filtering by

Clear all filters

156088-Thumbnail Image.png
Description
Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular

Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular fusion protein syncytin-1. This led to the hypothesis that syncytin-1 could be decreased in the muscle of obese/insulin resistant individuals. In contrast, it was found that obese/insulin resistant subjects had higher syncytin-1 expression in the muscle compared to that of the lean subjects. Across the subjects, syncytin-1 correlated significantly with body mass index, percent body fat, blood glucose and HbA1c levels, insulin sensitivity and muscle protein fractional synthesis rate. The concentrations of specific plasma fatty acids, such as the saturated fatty acid (palmitate) and monounsaturated fatty acid (oleate) are known to be altered in obese/insulin resistant humans, and also to influence the protein synthesis in muscle. Therefore, it was evaluated that the effects of palmitate and oleate on syncytin-1 expression, as well as 4E-BP1 phosphorylation, a key mechanism regulating muscle protein synthesis in insulin stimulated C2C12 myotubes. The results showed that treatment with 20 nM insulin, 300 µM oleate, 300 µM oleate +20 nM insulin and 300 µM palmitate + 300 µM oleate elevated 4E-BP1 phosphorylation. At the same time, 20 nM insulin, 300 µM palmitate, 300 µM oleate + 20 nM insulin and 300 µM palmitate + 300 µM oleate elevated syncytin-1 expression. Insulin stimulated muscle syncytin-1 expression and 4E-BP1 phosphorylation, and this effect was comparable to that observed in the presence of oleate alone. However, the presence of palmitate + oleate diminished the stimulatory effect of insulin on muscle syncytin-1 expression and 4E-BP1 phosphorylation. These findings indicate oleate but not palmitate increased total 4E-BP1 phosphorylation regardless of insulin and the presence of palmitate in insulin mediated C2C12 cells. The presence of palmitate inhibited the upregulation of total 4EB-P1 phosphorylation. Palmitate but not oleate increased syncytin-1 expression in insulin mediated C2C12 myotubes. It is possible that chronic hyperinsulinemia in obesity and/or elevated levels of fatty acids such as palmitate in plasma could have contributed to syncytin-1 overexpression and decreased muscle protein fractional synthesis rate in obese/insulin resistant human muscle.
ContributorsRavichandran, Jayachandran (Author) / Katsanos, Christos (Thesis advisor) / Coletta, Dawn (Committee member) / Dickinson, Jared (Committee member) / Arizona State University (Publisher)
Created2017
156093-Thumbnail Image.png
Description
Understanding where our bodies are in space is imperative for motor control, particularly for actions such as goal-directed reaching. Multisensory integration is crucial for reducing uncertainty in arm position estimates. This dissertation examines time and frequency-domain correlates of visual-proprioceptive integration during an arm-position maintenance task. Neural recordings

Understanding where our bodies are in space is imperative for motor control, particularly for actions such as goal-directed reaching. Multisensory integration is crucial for reducing uncertainty in arm position estimates. This dissertation examines time and frequency-domain correlates of visual-proprioceptive integration during an arm-position maintenance task. Neural recordings were obtained from two different cortical areas as non-human primates performed a center-out reaching task in a virtual reality environment. Following a reach, animals maintained the end-point position of their arm under unimodal (proprioception only) and bimodal (proprioception and vision) conditions. In both areas, time domain and multi-taper spectral analysis methods were used to quantify changes in the spiking, local field potential (LFP), and spike-field coherence during arm-position maintenance.

In both areas, individual neurons were classified based on the spectrum of their spiking patterns. A large proportion of cells in the SPL that exhibited sensory condition-specific oscillatory spiking in the beta (13-30Hz) frequency band. Cells in the IPL typically had a more diverse mix of oscillatory and refractory spiking patterns during the task in response to changing sensory condition. Contrary to the assumptions made in many modelling studies, none of the cells exhibited Poisson-spiking statistics in SPL or IPL.

Evoked LFPs in both areas exhibited greater effects of target location than visual condition, though the evoked responses in the preferred reach direction were generally suppressed in the bimodal condition relative to the unimodal condition. Significant effects of target location on evoked responses were observed during the movement period of the task well.

In the frequency domain, LFP power in both cortical areas was enhanced in the beta band during the position estimation epoch of the task, indicating that LFP beta oscillations may be important for maintaining the ongoing state. This was particularly evident at the population level, with clear increase in alpha and beta power. Differences in spectral power between conditions also became apparent at the population level, with power during bimodal trials being suppressed relative to unimodal. The spike-field coherence showed confounding results in both the SPL and IPL, with no clear correlation between incidence of beta oscillations and significant beta coherence.
ContributorsVanGilder, Paul (Author) / Buneo, Christopher A (Thesis advisor) / Helms-Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / Muthuswamy, Jit (Committee member) / Foldes, Stephen (Committee member) / Arizona State University (Publisher)
Created2017
156157-Thumbnail Image.png
Description
Recently, it was demonstrated that startle-evoked-movements (SEMs) are present during individuated finger movements (index finger abduction), but only following intense training. This demonstrates that changes in motor planning, which occur through training (motor learning - a characteristic which can provide researchers and clinicians with information about overall rehabilitative effectiveness), can

Recently, it was demonstrated that startle-evoked-movements (SEMs) are present during individuated finger movements (index finger abduction), but only following intense training. This demonstrates that changes in motor planning, which occur through training (motor learning - a characteristic which can provide researchers and clinicians with information about overall rehabilitative effectiveness), can be analyzed with SEM. The objective here was to determine if SEM is a sensitive enough tool for differentiating expertise (task solidification) in a common everyday task (typing). If proven to be true, SEM may then be useful during rehabilitation for time-stamping when task-specific expertise has occurred, and possibly even when the sufficient dosage of motor training (although not tested here) has been delivered following impairment. It was hypothesized that SEM would be present for all fingers of an expert population, but no fingers of a non-expert population. A total of 9 expert (75.2 ± 9.8 WPM) and 8 non-expert typists, (41.6 ± 8.2 WPM) with right handed dominance and with no previous neurological or current upper extremity impairment were evaluated. SEM was robustly present (all p < 0.05) in all fingers of the experts (except the middle) and absent in all fingers of non-experts except the little (although less robust). Taken together, these results indicate that SEM is a measurable behavioral indicator of motor learning and that it is sensitive to task expertise, opening it for potential clinical utility.
ContributorsBartels, Brandon Michael (Author) / Honeycutt, Claire F (Thesis advisor) / Schaefer, Sydney (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2018
155864-Thumbnail Image.png
Description
The interaction between visual fixations during planning and performance in a

dexterous task was analyzed. An eye-tracking device was affixed to subjects during

sequences of null (salient center of mass) and weighted (non salient center of mass) trials

with unconstrained precision grasp. Subjects experienced both expected and unexpected

perturbations, with the task of minimizing

The interaction between visual fixations during planning and performance in a

dexterous task was analyzed. An eye-tracking device was affixed to subjects during

sequences of null (salient center of mass) and weighted (non salient center of mass) trials

with unconstrained precision grasp. Subjects experienced both expected and unexpected

perturbations, with the task of minimizing object roll. Unexpected perturbations were

controlled by switching weights between trials, expected perturbations were controlled by

asking subjects to rotate the object themselves. In all cases subjects were able to

minimize the roll of the object within three trials. Eye fixations were correlated with

object weight for the initial context and for known shifts in center of mass. In subsequent

trials with unexpected weight shifts, subjects appeared to scan areas of interest from both

contexts even after learning present orientation.
ContributorsSmith, Michael David (Author) / Santello, Marco (Thesis advisor) / Buneo, Christopher (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2017
155960-Thumbnail Image.png
Description
The human hand is a complex biological system. Humans have evolved a unique ability to use the hand for a wide range of tasks, including activities of daily living such as successfully grasping and manipulating objects, i.e., lifting a cup of coffee without spilling. Despite the ubiquitous nature of hand

The human hand is a complex biological system. Humans have evolved a unique ability to use the hand for a wide range of tasks, including activities of daily living such as successfully grasping and manipulating objects, i.e., lifting a cup of coffee without spilling. Despite the ubiquitous nature of hand use in everyday activities involving object manipulations, there is currently an incomplete understanding of the cortical sensorimotor mechanisms underlying this important behavior. One critical aspect of natural object grasping is the coordination of where the fingers make contact with an object and how much force is applied following contact. Such force-to-position modulation is critical for successful manipulation. However, the neural mechanisms underlying these motor processes remain less understood, as previous experiments have utilized protocols with fixed contact points which likely rely on different neural mechanisms from those involved in grasping at unconstrained contacts. To address this gap in the motor neuroscience field, transcranial magnetic stimulation (TMS) and electroencephalography (EEG) were used to investigate the role of primary motor cortex (M1), as well as other important cortical regions in the grasping network, during the planning and execution of object grasping and manipulation. The results of virtual lesions induced by TMS and EEG revealed grasp context-specific cortical mechanisms underlying digit force-to-position coordination, as well as the spatial and temporal dynamics of cortical activity during planning and execution. Together, the present findings provide the foundation for a novel framework accounting for how the central nervous system controls dexterous manipulation. This new knowledge can potentially benefit research in neuroprosthetics and improve the efficacy of neurorehabilitation techniques for patients affected by sensorimotor impairments.
ContributorsMcGurrin, Patrick M (Author) / Santello, Marco (Thesis advisor) / Helms-Tillery, Steve (Committee member) / Kleim, Jeff (Committee member) / Davare, Marco (Committee member) / Arizona State University (Publisher)
Created2017
128226-Thumbnail Image.png
Description

The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is “synergy control” which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review,

The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is “synergy control” which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic (EMG) activity of hand muscles. We go beyond the often purely descriptive usage of synergy by reviewing the organization of the underlying neuronal circuitry in order to propose mechanistic explanations for various observed synergy phenomena. Finally, we propose a theoretical framework to reconcile important and still debated concepts such as the definitions of “fixed” vs. “flexible” synergies and mechanisms underlying the combination of synergies for hand control.

ContributorsSantello, Marco (Author) / Baud-Bovy, Gabriel (Author) / Jorntell, Henrik (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-04-08
128791-Thumbnail Image.png
Description

Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely

Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.

ContributorsTran, Lee (Author) / Hanavan, Paul (Author) / Campbell, Latoya (Author) / De Filippis, Elena (Author) / Lake, Douglas (Author) / Coletta, Dawn (Author) / Roust, Lori R. (Author) / Mandarino, Lawrence (Author) / Carroll, Chad C. (Author) / Katsanos, Christos (Author) / College of Health Solutions (Contributor)
Created2016-08-17
128709-Thumbnail Image.png
Description

Pure coconut oil, lanolin, and acetaminophen were vaporized at rates of 1–50 mg/min, using a porous network exhibiting a temperature gradient from 5000 to 5500 K/mm, without incurring noticeable chemical changes due to combustion, oxidation, or other thermally-induced chemical structural changes. The newly coined term “ereptiospiration” is used here to

Pure coconut oil, lanolin, and acetaminophen were vaporized at rates of 1–50 mg/min, using a porous network exhibiting a temperature gradient from 5000 to 5500 K/mm, without incurring noticeable chemical changes due to combustion, oxidation, or other thermally-induced chemical structural changes. The newly coined term “ereptiospiration” is used here to describe this combination of thermal transpiration at high temperature gradients since the process can force the creation of thermal aerosols by rapid heating in a localized zone. Experimental data were generated for these materials using two different supports for metering the materials to the battery powered coil: namely, a stainless steel fiber bundle and a 3-D printed steel cartridge. Heating coconut oil, lanolin, or acetaminophen in a beaker to lower temperatures than those achieved at the surface of the coil showed noticeable and rapid degradation in the samples, while visual and olfactory observations for ereptiospiration showed no noticeable degradation in lanolin and coconut oil while HPLC chromatograms along with visual observation confirm that within the limit of detection, acetaminophen remains chemically unaltered by ereptiospiration.

ContributorsWoolley, Christine (Author) / Garcia, Antonio (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-04-12