Matching Items (32)
Filtering by

Clear all filters

136633-Thumbnail Image.png
Description
Breast and other solid tumors exhibit high and varying degrees of intra-tumor heterogeneity resulting in targeted therapy resistance and other challenges that make the management and treatment of these diseases rather difficult. Due to the presence of admixtures of non-neoplastic cells with polyclonal cell populations, it is difficult to define

Breast and other solid tumors exhibit high and varying degrees of intra-tumor heterogeneity resulting in targeted therapy resistance and other challenges that make the management and treatment of these diseases rather difficult. Due to the presence of admixtures of non-neoplastic cells with polyclonal cell populations, it is difficult to define cancer genomes in patient samples. By isolating tumor cells from normal cells, and enriching distinct clonal populations, clinically relevant genomic aberrations that drive disease can be identified in patients in vivo. An in-depth analysis of clonal architecture and tumor heterogeneity was performed in a stage II chemoradiation-naïve breast cancer from a sixty-five year old patient. DAPI-based DNA content measurements and DNA content-based flow sorting was used to to isolate nuclei from distinct clonal populations of diploid and aneuploid tumor cells in surgical tumor samples. We combined DNA content-based flow cytometry and ploidy analysis with high-definition array comparative genomic hybridization (aCGH) and next-generation sequencing technologies to interrogate the genomes of multiple biopsies from the breast cancer. The detailed profiles of ploidy, copy number aberrations and mutations were used to recreate and map the lineages present within the tumor. The clonal analysis revealed driver events for tumor progression (a heterozygous germline BRCA2 mutation converted to homozygosity within the tumor by a copy number event and the constitutive activation of Notch and Akt signaling pathways. The highlighted approach has broad implications in the study of tumor heterogeneity by providing a unique ultra-high resolution of polyclonal tumors that can advance effective therapies and clinical management of patients with this disease.
ContributorsLaughlin, Brady Scott (Author) / Ankeny, Casey (Thesis director) / Barrett, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School for the Science of Health Care Delivery (Contributor)
Created2015-05
137665-Thumbnail Image.png
Description
The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete

The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete with ARM architecture by entering the mobile devices CPU market. Due to the fundamental differences between the Atom's Bonnell architecture and the ARM architecture, the Intel Atom product line must utilize such improved research and development methods. Until power consumption is drastically lowered while maintaining processing speed, the Atom product line will not be able to effectively break into the mobile devices CPU market.
ContributorsLandseidel, Jack Adam (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Anwar, Shahriar (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05
137694-Thumbnail Image.png
Description
The characteristics possessed by undergraduates who have enjoyed success in an intern position are defined. Through an interview process, four traits were identified: multitasking, strong team work understanding, an inquisitive nature, and application of a cross-disciplinary mindset. An exposition of how these four traits are employed to ensure success in

The characteristics possessed by undergraduates who have enjoyed success in an intern position are defined. Through an interview process, four traits were identified: multitasking, strong team work understanding, an inquisitive nature, and application of a cross-disciplinary mindset. An exposition of how these four traits are employed to ensure success in an internship setting is then given. Finally, a personal account of a project with Intel is expounded upon. This project addressed the unoptimized characterization test time of an Intel package quality control process. It improved throughput by developing a parallel testing method by increasing package carrier capacity and utilizing simultaneous testing. The final design led to a 4x increase of throughput rate.
ContributorsHusein, Sebastian Saint Tsei (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Jarrell, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05
137184-Thumbnail Image.png
Description
The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials

The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials engineering and its related concepts, a system of lecture interventions has been put in place to increase concept comprehension by supplementing lecture units with various activities, from additional worksheets, explicit concept discussions, and most recently, YouTube videos showcasing specific concepts and situations. In an attempt to correct the lack of actual concept comprehension, these interventions seek to interact with the human mind in a way that capitalizes on its ability to process and interpret non-linear knowledge and information.

Using a concept test given prior to the lecture unit, and after, the difference in scores is used to recognize if the concepts presented have actually been comprehended. Used specifically in a lecture unit on solubility and solutions, the concept test tested student’s knowledge of supersaturated, saturated, and unsaturated solutions. With a visual identification and a written explanation, the student’s ability to identify and explain the three solutions was tested.

In order to determine the cause of the change in score from pre- to post-test, an analysis of the change in scores and the effects of question type and solution type was conducted. The significant results are as follows:
 The change in score from pre- to post-test was found to be significant, with the only difference between the two tests being the lecture unit and intervention
 From pre- to post-test, solution type had a significant effect on the score, with the unsaturated solution being the most easily recognized and explained solution type
 Students that felt that the YouTube videos greatly increased their concept comprehension, on average, performed better than their counterparts and also saw a greater increase their score from pre- to post-test
ContributorsLinich, Christopher Graham (Author) / Krause, Stephen (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136849-Thumbnail Image.png
Description
Analysis of 4 lesson plans for primary education in which 3D printers are used either to build components or are directly used by students. Provides critique on how proper investment and utilization of this new technology can enrich education and misuse can waste time, money, and even reduce the quality

Analysis of 4 lesson plans for primary education in which 3D printers are used either to build components or are directly used by students. Provides critique on how proper investment and utilization of this new technology can enrich education and misuse can waste time, money, and even reduce the quality of education.
ContributorsPrzeslica, Michael Cody (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2014-05
136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
132791-Thumbnail Image.png
Description
When, in 1958, Disney aired a program titled “Magic Highway USA” featuring autonomous vehicles directed by punch-cards, few would have predicted touchscreen reprogrammable devices. None could have foreseen a battery powered car capable of fully autonomous operation and a zero to sixty mph acceleration in 1.9 seconds. The 21st century

When, in 1958, Disney aired a program titled “Magic Highway USA” featuring autonomous vehicles directed by punch-cards, few would have predicted touchscreen reprogrammable devices. None could have foreseen a battery powered car capable of fully autonomous operation and a zero to sixty mph acceleration in 1.9 seconds. The 21st century has proven to be one of exponential technological advancement and stunning innovation, with few case studies more obvious than that of the progression of autonomous vehicle (AV) technology. Advances in transportation technology and robotics have, throughout history, pointed to the eventual development of fully autonomous vehicles; however, it is only within the last 10 years that innovation has met determination to leapfrog AV development to its current state. As this technology has developed, society has begun to realize its extensive social implications, both positive and negative, from extending mobility to the impaired to reducing the need to fill jobs in the transportation industry. With progress comes new challenges and as planners strive to get ahead of the pace of AV innovation, it is becoming increasingly apparent that questions of data security, privacy, regulation, and liability must be quickly addressed. Some also question the economic feasibility of AV and suggest that, unless new economic models are developed around the transportation industry, there is a significant risk of increased societal strain as a result of digital and economic inequality. As a consequence, industry, academia, and policy have all emerged to direct, manage, and govern this new and exciting space. Autonomous vehicles promise to move the world into a new era of almost limitless potential but only if society, industry, and policy are capable of moving with it.
ContributorsGalvin, Sarah Nicole (Author) / Krause, Stephen (Thesis director) / Anwar, Shahriar (Committee member) / School of Politics and Global Studies (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133266-Thumbnail Image.png
Description
Graphene has the ability to advance many common fields, including: membranes, composites and coatings, energy, and electronics. For membranes, graphene will be used as a filter for desalination plants which will reduce the cost of desalination and greatly increase water security in developing countries. For composites and coatings, graphene's strength,

Graphene has the ability to advance many common fields, including: membranes, composites and coatings, energy, and electronics. For membranes, graphene will be used as a filter for desalination plants which will reduce the cost of desalination and greatly increase water security in developing countries. For composites and coatings, graphene's strength, flexibility, and lightweight will be instrumental in producing the next generation of athletic wear and sports equipment. Graphene's use in energy comes from its theorized ability to charge a phone battery in seconds or an electric car in minutes. Finally, for electronics, graphene will be used to create faster transistors, flexible electronics, and fully integrated wearable technology.
ContributorsSiegel, Adam (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly using principles of teamwork. Studying attributes and mechanism of creating successful biomedical engineering teams may even contribute more to the fast paste growth of this industry. In comprehensive literate review performed, general importance of teamwork was studied. Also specific hard and soft attributes which may contribute to teamwork was studied. Currently, there are number of general assessment tools which assists managements in industry and academia to systematically bring qualified people together to flourish their talents and skills as members of a biomedical engineering teams. These assessment tools, although are useful, but are not comprehensive, incorporating literature review attributes, and also doesn't not contain student perspective who have experience as being part of a design and development team. Although there are many scientific researches and papers designated to this matter, but there is no study which purposefully studies development of an assessment tool which is designated to biomedical engineering workforce and is constructed of both literature, current assessment tools, and also student perspective. It is hypothesized that a more comprehensive composite assessment tool that incorporate both soft and hard team attributes from a combined professional and student perspective could be implemented in the development of successful Biomedical Engineering Design and Development teams and subsequently used in 21st century workforce.
ContributorsAfzalian Naini, Nima (Author) / Pizziconi, Vincent (Thesis director) / Ankeny, Casey (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134240-Thumbnail Image.png
Description
One of the more difficult portions of our capstone project has been identifying a potential market for our Clay Metal—whether there even is a potential market. To that end, I plan to use the strategies discussed in MSE482 to complete a feasibility study and market analysis for our two clay

One of the more difficult portions of our capstone project has been identifying a potential market for our Clay Metal—whether there even is a potential market. To that end, I plan to use the strategies discussed in MSE482 to complete a feasibility study and market analysis for our two clay metal systems to determine if our alloys are viable as a product in any market and to determine what steps we might need to take to bring our material to that market. While we have done some preliminary research similar to a feasibility study, a more comprehensive understanding of our problem and its existing solutions will help us optimize our design with respect to desirable properties and cost. There are various metrics used to identify what materials properties are most desirable for consumers; the exact metric we use will become clearer when I have identified our demographic.
ContributorsMandzuk, Kevin Paul (Author) / Adams, Jim (Thesis director) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05