Matching Items (29)
131787-Thumbnail Image.png
Description
I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance

I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance in several genetic lines of Drosophila melanogaster. I hypothesized that genotypes that can fly better at high temperatures are also able to fly well at hypoxia. Genotypes from the Drosophila Genetic Reference Panel (DGRP) were assessed for flight at hypoxia and normal temperature (12% O2 and 25°C) as well as normoxia and high temperature (21% O2 and 39°C). After testing 66 lines from the DGRP, the oxygen- and capacity-limited thermal tolerance theory is supported; hypoxia-resistant lines are more likely to be heat-resistant. This supports previous research, which suggested an interaction between the tolerance of the two environmental variables. I used this data to perform a genome-wide association study to find specific single-nucleotide polymorphisms associated with heat tolerance and hypoxia tolerance but found no specific genomic markers. Understanding factors that limit an organism’s stress tolerance as well as the regions of the genome that dictate this phenotype should enable us to predict how organisms may respond to the growing threat of climate change.
ContributorsFredette-Roman, Jacob Daniel (Author) / Angilletta, Michael (Thesis director) / VandenBrooks, John (Committee member) / Youngblood, Jacob (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131551-Thumbnail Image.png
Description
The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related

The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related Ae. albopictus are the primary vectors of the arboviral diseases chikungunya, Zika, yellow fever and dengue. Ae. aegypti tends to blood feed multiple times per gonotrophic cycle (cycle of feeding and egg laying) which, alongside a preference for human blood and close association with human habitation, contributes to an increased risk of Ae. aegypti borne virus transmission (Scott & Takken, 2012). Between 2010-2017, 153 travel-associated cases of dengue were reported in the whole of Arizona (Rivera et al., 2020); while there have been no documented locally transmitted cases of Aedes borne diseases in Maricopa county, there are no apparent reasons why local transmission can’t occur in the future via local Aedes aegypti mosquitoes infected after feeding from travelling viremic hosts. Incidents of local dengue transmission in New York (Rivera et al., 2020) and Barcelona (European Center for Disease Control [ECDC], 2019) suggest that outbreaks of Aedes borne arbovirus’ can occur in regions more temperate than the current endemic range of Aedes borne diseases. Further, while the fact that Ae. aegypti eggs have a high mortality rate when exposed to cold temperatures limits the ability for Ae aegypti to establish stable breeding populations in temperate climates (Thomas, Obermayr, Fischer, Kreyling, & Beierkuhnlein, 2012), global increases in temperature will expand the possible ranges of Ae aegypti and Aedes borne diseases.
ContributorsHon, Ruiheng (Author) / Paaijmans, Krijn (Thesis director) / Bond, Angela (Committee member) / Angilletta, Michael (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131240-Thumbnail Image.png
Description
I am evaluating a notion that stems from a controversial hypothesis of heat stress. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis predicts a positive correlation between the tolerance of hypoxia and the tolerance of heat in animals, where the notion claims that these animals must be metabolically active. To

I am evaluating a notion that stems from a controversial hypothesis of heat stress. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis predicts a positive correlation between the tolerance of hypoxia and the tolerance of heat in animals, where the notion claims that these animals must be metabolically active. To evaluate this notion, I tested heat coma recovery in several genetic lines of Drosophila melanogaster and compared it to data collected in prior studies. I hypothesized that the correlations between hypoxia tolerance and heat coma recovery would be similar to correlations found in Teague et al. (2017) and Fredette-Roman et al. (2020). After testing 65 lines from the Drosophila Genetic Reference Panel (DGRP), the notion was supported and provided evidence for the validity of OCLTT. Additional work is needed to enhance our understanding of the limitations of heat tolerance and doing such will generate more accurate models and predictions on how animals will respond to climate change.
ContributorsBabarinde, Oluwatosin Abimbola (Author) / Angilletta, Michael (Thesis director) / VandenBrooks, John (Committee member) / Youngblood, Jacob (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
168609-Thumbnail Image.png
Description
By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to

By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to temperature or how to model these processes in complex environments. Using the South American locust (Schistocerca cancellata) as a model system, my dissertation addressed this debate and explained how climate limits the persistence of locust populations. Locusts of S. cancellata are serious agricultural pests with occasional outbreaks covering up to 4 million km2 over six countries. Because outbreaks are largely driven by climate, understanding how climate limits the persistence of locusts may help predict crop losses in future climates. To achieve this aim, I integrated observational, experimental, and computational approaches. First, I tested a physiological model of heat stress. By measuring the heat tolerance of locusts under different oxygen concentrations, I demonstrated that heat tolerance depends on oxygen supply during the hatchling stage only. Second, I modeled the geographic distribution of locusts using physiological traits. I started by measuring thermal effects on consumption and defecation of field-captured locusts, and I then used these data to model energy gain in current and future climates. My results indicated that incorporating physiological mechanisms can improve the accuracy of models and alter predicted impacts of climate change. Finally, I explored the causes and consequences of intraspecific variation in heat tolerance. After measuring heat tolerance of locusts in different hydration states and developmental stages, I modeled survival in historical microclimates. My models indicated that recent climate change has amplified the risk of overheating for locusts, and this risk depended strongly on shade availability, hydration state, and developmental stage. Therefore, the survival of locusts in future climates will likely depend on their access to shade and water. Overall, my dissertation argues that modeling physiological mechanisms can improve the ability of biologists to predict the impacts of climate change.
ContributorsYoungblood, Jacob (Author) / Angilletta, Michael (Thesis advisor) / Buckley, Lauren (Committee member) / Cease, Arianne (Committee member) / Smith, Brian (Committee member) / Vanden Brooks, John (Committee member) / Arizona State University (Publisher)
Created2022
190800-Thumbnail Image.png
Description
Ectotherms rely on external heat to attain target body temperatures which can vary based on the animal’s current physiological activity. Many ectotherms become thermophilic (“heat-loving”) during crucial physiological processes like digestion and reproduction, behaviorally thermoregulating to increase body temperature higher than what they otherwise prefer. However, there is a positive

Ectotherms rely on external heat to attain target body temperatures which can vary based on the animal’s current physiological activity. Many ectotherms become thermophilic (“heat-loving”) during crucial physiological processes like digestion and reproduction, behaviorally thermoregulating to increase body temperature higher than what they otherwise prefer. However, there is a positive relationship between body temperature and water loss that dictates increasing body temperature typically elicits an increase in water loss. Animals that inhabit areas where water is at least seasonally limited (e.g., deserts, wet-dry forests) may face a tradeoff between prioritizing behavioral thermophily to optimize physiological processes versus prioritizing water balance and potentially sacrificing some aspect of total performance capability.It is thus far unknown how reduced water availability and subsequent dehydration may influence thermophily in ectotherms. I hypothesized that behaviorally thermoregulating ectotherms exhibit thermophily during critical physiological events, and the extent to which thermophily is expressed is influenced by the animal’s hydric state. Using Children’s pythons (Antaresia childreni), I investigated the effects of dehydration on behavioral thermophily during digestion and reproduction. I found that dehydration caused a suppression in digestion-associated thermophily, where dehydrated snakes returned to pre-feeding body temperature sooner than they did when they were hydrated. In contrast, water deprivation at different reproductive stages had no effect on thermophily despite leading to a significant increase in the female’s plasma osmolality. ii Additionally, the timing of water deprivation during reproduction had differing effects on plasma osmolality and circulating triglyceride, total protein, and corticosterone concentrations. My research provides evidence of the sensitive and complex dynamic between body temperature, water balance, and physiological processes. At a time when many dry ecosystems are becoming hotter and drier, my investigation of dehydration and its influence on thermal dynamics and physiological metrics provides insight into cryptic effects on the vital processes of digestion and reproduction.
ContributorsAzzolini, Jill L. (Author) / Denardo, Dale F. (Thesis advisor) / John-Alder, Henry (Committee member) / Angilletta, Michael (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
128372-Thumbnail Image.png
Description

Recent theory predicts that the sizes of cells will evolve according to fluctuations in body temperature. Smaller cells speed metabolism during periods of warming but require more energy to maintain and repair. To evaluate this theory, we studied the evolution of cell size in populations of Drosophila melanogaster held at

Recent theory predicts that the sizes of cells will evolve according to fluctuations in body temperature. Smaller cells speed metabolism during periods of warming but require more energy to maintain and repair. To evaluate this theory, we studied the evolution of cell size in populations of Drosophila melanogaster held at either a constant temperature (16°C or 25°C) or fluctuating temperatures (16 and 25°C). Populations that evolved at fluctuating temperatures or a constant 25°C developed smaller thoraxes, wings, and cells than did flies exposed to a constant 16°C. The cells of flies from fluctuating environments were intermediate in size to those of flies from constant environments. Most genetic variation in cell size was independent of variation in wing size, suggesting that cell size was a target of selection. These evolutionary patterns accord with patterns of developmental plasticity documented previously. Future studies should focus on the mechanisms that underlie the selective advantage of small cells at high or fluctuating temperatures.

ContributorsAdrian, Gregory (Author) / Czarnoleski, Marcin (Author) / Angilletta, Michael (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-12
128371-Thumbnail Image.png
Description

Natural selection alters the distribution of a trait in a population and indirectly alters the distribution of genetically correlated traits. Long-standing models of thermal adaptation assume that trade-offs exist between fitness at different temperatures; however, experimental evolution often fails to reveal such trade-offs. Here, we show that adaptation to benign

Natural selection alters the distribution of a trait in a population and indirectly alters the distribution of genetically correlated traits. Long-standing models of thermal adaptation assume that trade-offs exist between fitness at different temperatures; however, experimental evolution often fails to reveal such trade-offs. Here, we show that adaptation to benign temperatures in experimental populations of Drosophila melanogaster resulted in correlated responses at the boundaries of the thermal niche. Specifically, adaptation to fluctuating temperatures (16–25°C) decreased tolerance of extreme heat. Surprisingly, flies adapted to a constant temperature of 25°C had greater cold tolerance than did flies adapted to other thermal conditions, including a constant temperature of 16°C. As our populations were never exposed to extreme temperatures during selection, divergence of thermal tolerance likely reflects indirect selection of standing genetic variation via linkage or pleiotropy. We found no relationship between heat and cold tolerances in these populations. Our results show that the thermal niche evolves by direct and indirect selection, in ways that are more complicated than assumed by theoretical models.

ContributorsCondon, Catriona (Author) / Acharya, Ajjya (Author) / Adrian, Gregory (Author) / Hurliman, Alex (Author) / Malekooti, David (Author) / Nguyen, Phivu (Author) / Zelic, Max (Author) / Angilletta, Michael (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-12
129646-Thumbnail Image.png
Description

The locomotor capacity of amphibians depends strongly on temperature and hydration. Understanding the potential interactions between these variables remains an important challenge because temperature and water availability covary strongly in natural environments. We explored the effects of temperature and hydration on the hopping speeds of Rhinella granulosa, a small toad

The locomotor capacity of amphibians depends strongly on temperature and hydration. Understanding the potential interactions between these variables remains an important challenge because temperature and water availability covary strongly in natural environments. We explored the effects of temperature and hydration on the hopping speeds of Rhinella granulosa, a small toad from the semiarid Caatinga and the Atlantic Rain Forest in Brazil. We asked whether thermal and hydric states interact to determine performance and whether toads from the Caatinga differ from their conspecifics from the Atlantic Forest. Both dehydration and cooling impaired hopping speed, but effects were independent of one another. In comparison to performances of other anurans, the performance of R. granulosa was far less sensitive to dehydration. Consequently, dehydrated members of this species may be able to sustain performance through high body temperatures, which agrees with the exceptional heat tolerance of this species. Surprisingly, toads from both the Caatinga and the Atlantic Forest were relatively insensitive to dehydration. This observation suggests that migration or gene flow between toads from the forest and those from a drier region occurred or that toads from a dry region colonized the forest secondarily.

ContributorsPrates, Ivan (Author) / Angilletta, Michael (Author) / Wilson, Robbie S. (Author) / Niehaus, Amanda C. (Author) / Navas, Carlos A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-09-18
128344-Thumbnail Image.png
Description

High temperatures can stress animals by raising the oxygen demand above the oxygen supply. Consequently, animals under hypoxia could be more sensitive to heating than those exposed to normoxia. Although support for this model has been limited to aquatic animals, oxygen supply might limit the heat tolerance of terrestrial animals

High temperatures can stress animals by raising the oxygen demand above the oxygen supply. Consequently, animals under hypoxia could be more sensitive to heating than those exposed to normoxia. Although support for this model has been limited to aquatic animals, oxygen supply might limit the heat tolerance of terrestrial animals during energetically demanding activities. We evaluated this model by studying the flight performance and heat tolerance of flies (Drosophila melanogaster) acclimated and tested at different concentrations of oxygen (12%, 21%, and 31%). We expected that flies raised at hypoxia would develop into adults that were more likely to fly under hypoxia than would flies raised at normoxia or hyperoxia. We also expected flies to benefit from greater oxygen supply during testing. These effects should have been most pronounced at high temperatures, which impair locomotor performance. Contrary to our expectations, we found little evidence that flies raised at hypoxia flew better when tested at hypoxia or tolerated extreme heat better than did flies raised at normoxia or hyperoxia. Instead, flies raised at higher oxygen levels performed better at all body temperatures and oxygen concentrations. Moreover, oxygen supply during testing had the greatest effect on flight performance at low temperature, rather than high temperature. Our results poorly support the hypothesis that oxygen supply limits performance at high temperatures, but do support the idea that hyperoxia during development improves performance of flies later in life.

Created2017-05-23