Matching Items (5,852)
Filtering by

Clear all filters

151979-Thumbnail Image.png
Description
Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces.
ContributorsFrost, Denzil (Author) / Dai, Lenore L (Thesis advisor) / Torres, César I (Committee member) / Nielsen, David R (Committee member) / Squires, Kyle D (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2013
152802-Thumbnail Image.png
Description
A new photocatalytic material was synthesized to investigate its performance for the photoreduction of carbon dioxide (CO2) in the presence of water vapor (H2O) to valuable products such as carbon monoxide (CO) and methane (CH4). The performance was studied using a gas chromatograph (GC) with a flame ionization detector (FID)

A new photocatalytic material was synthesized to investigate its performance for the photoreduction of carbon dioxide (CO2) in the presence of water vapor (H2O) to valuable products such as carbon monoxide (CO) and methane (CH4). The performance was studied using a gas chromatograph (GC) with a flame ionization detector (FID) and a thermal conductivity detector (TCD). The new photocatalytic material was an ionic liquid functionalized reduced graphite oxide (IL-RGO (high conductive surface))-TiO2 (photocatalyst) nanocomposite. Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV-vis absorption spectroscopy techniques were employed to characterize the new catalyst. In the series of experiments performed, the nanocomposite material was confined in a UV-quartz batch reactor, exposed to CO2 and H2O and illuminated by UV light. The primary product formed was CO with a maximum production ranging from 0.18-1.02 µmol(gcatalyst-hour)-1 for TiO2 and 0.41-1.41 µmol(gcatalyst-hour)-1 for IL-RGO-TiO2. A trace amount of CH4 was also formed with its maximum ranging from 0.009-0.01 µmol(gcatalyst-hour)-1 for TiO2 and 0.01-0.04 µmol(gcatalyst-hour)-1 for IL-RGO-TiO2. A series of background experiments were conducted and results showed that; (a) the use of a ionic liquid functionalized reduced graphite oxide -TiO2 produced more products as compared to commercial TiO2, (b) the addition of methanol as a hole scavenger boosted the production of CO but not CH4, (c) a higher and lower reduction time of IL-RGO as compared to the usual 24 hours of reduction presented basically the same production of CO and CH4, (d) the positive effect of having an ionic liquid was demonstrated by the double production of CO obtained for IL-RGO-TiO2 as compared to RGO-TiO2 and (e) a change in the amount of IL-RGO in the IL-RGO-TiO2 represented a small difference in the CO production but not in the CH4 production. This work ultimately demonstrated the huge potential of the utility of a UV-responsive ionic liquid functionalized reduced graphite oxide-TiO2 nano-composite for the reduction of CO2 in the presence of H2O for the production of fuels.
ContributorsCastañeda Flores, Alejandro (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2014
153074-Thumbnail Image.png
Description
Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation,

Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation, have received increasing attention. More specifically, the damage can be made detectable by mechanochromic polymers, which provide a visible color change upon the scission of covalent bonds under stress. This dissertation focuses on the study of a novel self-sensing framework for identifying early and in-situ damage by employing unique stress-sensing mechanophores. Two types of mechanophores, cyclobutane and cyclooctane, were utilized, and the former formed from cinnamoyl moeities and the latter formed from anthracene upon photodimerization. The effects on the thermal and mechanical properties with the addition of the cyclobutane-based polymers into epoxy matrices were investigated. The emergence of cracks was detected by fluorescent signals at a strain level right after the yield point of the polymer blends, and the fluorescence intensified with the accumulation of strain. Similar to the mechanism of fluorescence emission from the cleavage of cyclobutane, the cyclooctane moiety generated fluorescent emission with a higher quantum yield upon cleavage. The experimental results also demonstrated the success of employing the cyclooctane type mechanophore as a potential force sensor, as the fluorescence intensification was correlated with the strain increase.
ContributorsZou, Jin (Author) / Dai, Lenore L (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Lind, Mary L (Committee member) / Mu, Bin (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
151118-Thumbnail Image.png
Description
Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously use CO2 while producing energy. The photocatalytic reduction of CO2 to fuels over the photocatalyst titanium dioxide (TiO2)

Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously use CO2 while producing energy. The photocatalytic reduction of CO2 to fuels over the photocatalyst titanium dioxide (TiO2) is such a process. However, this process is presently inefficient and unsuitable for industrial applications. A step toward making this process more effective is to alter TiO2 based photocatalysts to improve their activity. The interactions of CO2 with oxygen-deficient and unmodified (210) surfaces of brookite TiO2 were studied using first-principle calculations on cluster systems. Charge and spin density analyses were implemented to determine if charge transfer to the CO2 molecule occurred and whether this charge transfer was comparable to that seen with the oxygen-deficient and unmodified anatase TiO2 (101) surfaces. Although the unmodified brookite (210) surface provided energetically similar CO2 interactions as compared to the unmodified anatase (101) surface, the unmodified brookite surface had negligible charge transfer to the CO2 molecule. This result suggests that unmodified brookite is not a suitable catalyst for the reduction of CO2. However, the results also suggest that modification of the brookite surface through the creation of oxygen vacancies may lead to enhancements in CO2 reduction. The computational results were supported with laboratory data for CO2 interaction with perfect brookite and oxygen-deficient brookite. The laboratory data, generated using diffuse reflectance Fourier transform infrared spectroscopy, confirms the presence of CO2- on only the oxygen-deficient brookite. Additional computational work was performed on I-doped anatase (101) and I-doped brookite (210) surface clusters. Adsorption energies and charge and spin density analyses were performed and the results compared. While charge and spin density analyses showed minute charge transfer to CO2, the calculated adsorption energies demonstrated an increased affinity for CO2adsorption onto the I-doped brookite surface. Gathering the results from all calculations, the computational work on oxygen-deficient, I-doped, and unmodified anatase and brookite surface structures suggest that brookite TiO2 is a potential photocatalysts for CO2 photoreduction.
ContributorsRodriguez, Monique M (Author) / Andino, Jean M (Thesis advisor) / Nielsen, David R (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2012
151227-Thumbnail Image.png
Description
Volatile Organic Compounds (VOCs) are central to atmospheric chemistry and have significant impacts on the environment. The reaction of oxygenated VOCs with OH radicals was first studied to understand the fate of oxygenated VOCs. The rate constants of the gas-phase reaction of OH radicals with trans-2-hexenal, trans-2-octenal, and trans-2 nonenal

Volatile Organic Compounds (VOCs) are central to atmospheric chemistry and have significant impacts on the environment. The reaction of oxygenated VOCs with OH radicals was first studied to understand the fate of oxygenated VOCs. The rate constants of the gas-phase reaction of OH radicals with trans-2-hexenal, trans-2-octenal, and trans-2 nonenal were determined using the relative rate technique. Then the interactions between VOCs and ionic liquid surfaces were studied. The goal was to find a material to selectively detect alcohol compounds. Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of VOCs. The thermodynamic data suggest that 1-butyl-3-methylimindazolium chloride (C4mimCl) preferentially interacts with alcohols as compared to other classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C4mimCl to various alcohols and a VOC mixture with an alcohol in it. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C4mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds. The experimental results demonstrated that C4mimCl is selective to alcohols, even in complex mixtures. The kinetic study of the association and dissociation of alcohols with C4minCl surfaces was performed. The findings in this work provide information for future gas-phase alcohol sensor design. CO2 is a major contributor to global warming. An ionic liquid functionalized reduced graphite oxide (IL-RGO)/ TiO2 nanocomposite was synthesized and used to reduce CO2 to a hydrocarbon in the presence of H2O vapor. The SEM image revealed that IL-RGO/TiO2 contained separated reduced graphite oxide flakes with TiO2 nanoparticles. Diffuse Reflectance Infrared Fourier Transform Spectroscopy was used to study the conversion of CO2 and H2O vapor over the IL-RGO/TiO2 catalyst. Under UV-Vis irradiation, CH4 was found to form after just 40 seconds of irradiation. The concentration of CH4 continuously increased under longer irradiation time. This research is particularly important since it seems to suggest the direct, selective formation of CH4 as opposed to CO.
ContributorsGao, Tingting (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
151268-Thumbnail Image.png
Description
The mitigation and conversion of carbon dioxide (CO2) to more useful carbon chemicals is a research topic that is at the forefront of current engineering and sustainability applications. Direct photocatalytic reduction of CO2 with water (H2O) vapor to C1-C4 hydrocarbons has significant potential in setting substantial groundwork for meeting the

The mitigation and conversion of carbon dioxide (CO2) to more useful carbon chemicals is a research topic that is at the forefront of current engineering and sustainability applications. Direct photocatalytic reduction of CO2 with water (H2O) vapor to C1-C4 hydrocarbons has significant potential in setting substantial groundwork for meeting the increasing energy demands with minimal environmental impact. Previous studies indicate that titanium dioxide (TiO2) containing materials serve as the best photocatalyst for CO2 and H2O conversion to higher-value products. An understanding of the CO2-H2O reaction mechanism over TiO2 materials allows one to increase the yield of certain products such as carbon monoxide (CO) and methane (CH4). The basis of the work discussed in this thesis, investigates the interaction of small molecules (CO, CH4,H2O) over the least studied TiO2 polymorph - brookite. Using the Gaussian03 computational chemistry software package, density functional theory (DFT) calculations were performed to investigate the adsorption behavior of CO, H2O, and CH4 gases on perfect and oxygen-deficient brookite TiO2 (210) and anatase TiO2 (101) surfaces. The most geometrically and energetically favorable configurations of these molecules on the TiO2 surfaces were computed using the B3LYP/6-31+G(2df,p) functional/basis set. Calculations from this theoretical study indicate all three molecules adsorb more favorably onto the brookite TiO2 (210) surface. Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) was used to investigate the adsorption and desorption behavior of H2O and CH4 on Evonik P25 TiO2. Results from the experimental studies and theoretical work will serve as a significant basis for reaction prediction on brookite TiO2 surfaces.
ContributorsRollins, Selisa F (Author) / Andino, Jean M (Thesis advisor) / Dai, Lenore L (Committee member) / Forzani, Erica S (Committee member) / Arizona State University (Publisher)
Created2012
154071-Thumbnail Image.png
Description
Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on design and synthesis of environmentally responsive microgels and their composites, and encompasses methods of utilizing microgel systems in applications as vehicles for the adsorption, retention, and targeted delivery of chemical species. Furthermore, self-assembled microgel particles at ionic liquid (IL)-water interfaces demonstrate responsive colloidal lattice morphology. The thesis first reports on the fundamental aspects of synthesis, functionalization, and characteristic properties of multifunctional environmentally responsive microgels derived from poly(N-isopropylacrylamide) (PNIPAm) and other functional co-monomers. In particular, the uptake and release of active chemical species such as rheology modifiers into and from these ionic microgels is demonstrated. Moreover, a facile tunable method for the formation of organic-inorganic composites with Fe3O4 nanoparticles adsorbed and embedded within ionic microgel particles is explored. Additionally, the development of zwitterionic microgels (ZI-MG) is presented. These aqueous ZI-MG dispersions exhibit reversible parabolic swelling as a function of pH and display a minimum hydrodynamic diameter at a tunable isoelectric point (IEP). This study also elucidates the controlled uptake and release of surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the polymer networks are explained in terms of their binding interactions. The latter part of this thesis highlights the versatility of fluorescently labeled microgel particles as stabilizers for IL-water droplets. When the prepared particles form monolayers and equilibrate at the liquid-liquid interface, the colloidal lattice organization may re-order itself depending on the surface charge of these particles. Finally, it is shown that the spontaneously formed and densely packed layers of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species.
ContributorsChen, Haobo (Author) / Dai, Lenore L (Committee member) / Chen, Kangping (Committee member) / Forzani, Erica (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2015
153830-Thumbnail Image.png
Description
Polymer-gold composite particles are of tremendous research interests. Contributed by their unique structures, these particles demonstrate superior properties for optical, catalytic and electrical applications. Moreover, the incorporation of “smart” polymers into polymer-gold composite particles enables the composite particles synergistically respond to environment-stimuli like temperature, pH and light with promising applications

Polymer-gold composite particles are of tremendous research interests. Contributed by their unique structures, these particles demonstrate superior properties for optical, catalytic and electrical applications. Moreover, the incorporation of “smart” polymers into polymer-gold composite particles enables the composite particles synergistically respond to environment-stimuli like temperature, pH and light with promising applications in multiple areas.

A novel Pickering emulsion polymerization route is found for synthesis of core-shell structured polymer-gold composite particles. It is found that the surface coverage of gold nanoparticles (AuNP) on a polystyrene core is influenced by gold nanoparticle concentration and hydrophobicity. More importantly, the absorption wavelength of polystyrene-gold composite particles is tunable by adjusting AuNP interparticle distance. Further, core-shell structured polystyrene-gold composite particles demonstrate excellent catalyst recyclability.

Asymmetric polystyrene-gold composite particles are successfully synthesized via seeded emulsion polymerization, where AuNPs serve as seeds, allowing the growth of styrene monomers/oligomers on them. These particles also demonstrate excellent catalyst recyclability. Further, monomers of “smart” polymers, poly (N-isopropylacrylamide) (PNIPAm), are successfully copolymerized into asymmetric composite particles, enabling these particles’ thermo-responsiveness with significant size variation around lower critical solution temperature (LCST) of 31°C. The significant size variation gives rise to switchable scattering intensity property, demonstrating potential applications in intensity-based optical sensing.

Multipetal and dumbbell structured gold-polystyrene composite particles are also successfully synthesized via seeded emulsion polymerization. It is intriguing to observe that by controlling reaction time and AuNP size, tetrapetal-structured, tripetal-structured and dumbbell-structured gold-polystyrene are obtained. Further, “smart” PNIPAm polymers are successfully copolymerized into dumbbell-shaped particles, showing significant size variation around LCST. Self-modulated catalytic activity around LCST is achieved for these particles. It is hypothesized that above LCST, the significant shrinkage of particles limits diffusion of reaction molecules to the surface of AuNPs, giving a reduced catalytic activity.

Finally, carbon black (CB) particles are successfully employed for synthesis of core- shell PNIPAm/polystyrene-CB particles. The thermo-responsive absorption characteristics of PNIPAm/polystyrene-CB particles enable them potentially suitable to serve as “smart” nanofluids with self-controlled temperature. Compared to AuNPs, CB particles provide desirable performance here, because they show no plasmon resonance in visible wavelength range, whereas AuNPs’ absorption in the visible wavelength range is undesirable.
ContributorsZhang, Mingmeng (Author) / Dai, Lenore L (Committee member) / Phelan, Patrick E (Committee member) / Otanicar, Todd P (Committee member) / Lin, Jerry (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2015
154753-Thumbnail Image.png
Description
The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. Thus, novel damage detection schemes are required that can sense the precursors to damage. Mechanochemistry is the area of research that involves the use of mechanical force to induce

The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. Thus, novel damage detection schemes are required that can sense the precursors to damage. Mechanochemistry is the area of research that involves the use of mechanical force to induce a chemical change, with recent study focusing on directing the mechanical force to embedded mechanophore units for a targeted chemical response. Mechanophores are molecular units that provide a measureable signal in response to an applied force, often in the form of a visible color change or fluorescent emission, and their application to thermoset network polymers has been limited. Following preliminary work on polymer blends of cyclobutane-based mechanophores and epoxy, dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophore particles were synthesized and employed to form stress sensitive particle reinforced epoxy matrix composites.

Under an applied stress, the cyclooctane-rings in the Di-AC particles revert back to their fluorescent anthracene form, which linearly enhances the overall fluorescence of the composite in response to the applied strain. The fluorescent signal further allows for stress sensing in the elastic region of the stress-strain curve, which is considered to be a form of damage precursor detection. This behavior was further analyzed at the molecular scale with corresponding molecular dynamics simulations. Following the successful application of Di-AC to an epoxy matrix, the mechanophore particles were incorporated into a polyurethane matrix to show the universal nature of Di-AC as a stress-sensitive particle filler. Interestingly, in polyurethane Di-AC could successfully detect damage with less applied strain compared to the epoxy system.

While mechanophores of varying chemistries have been covalently incorporated into elastomeric and thermoplastic polymer systems, they have not yet been covalently incorporated a thermoset network polymer. Thus, following the study of mechanophore particles as stress-sensitive fillers, two routes of grafting mechanophore units into an epoxy system to form a self-sensing nanocomposite were explored. These involved the mechanophore precursor and mechanophore, cinnamamide and di-cinnamamide, respectively. With both molecules, the free amine groups can directly bond to epoxy resin to covalently incorporate themselves within the thermoset network to form a self-sensing nanocomposite.
ContributorsNofen, Elizabeth (Author) / Dai, Lenore L (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Emady, Heather (Committee member) / Mu, Bin (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2016
154279-Thumbnail Image.png
Description
A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature

A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors.

Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors.

Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.
ContributorsMarrs, Michael (Author) / Raupp, Gregory B (Thesis advisor) / Allee, David R. (Committee member) / Dai, Lenore L (Committee member) / Forzani, Erica S (Committee member) / Bawolek, Edward J (Committee member) / Arizona State University (Publisher)
Created2016