Matching Items (183)
Filtering by

Clear all filters

137663-Thumbnail Image.png
Description
Background: The human papillomavirus (HPV) is the cause of virtually all cervical cancer, with over 520,000 new cases and 275,000 deaths annually. Although there are at least 200 unique HPV strains, only “high-risk” types, may progress to cancer. Serum antibodies to HPV oncoproteins are stable and specific markers that may

Background: The human papillomavirus (HPV) is the cause of virtually all cervical cancer, with over 520,000 new cases and 275,000 deaths annually. Although there are at least 200 unique HPV strains, only “high-risk” types, may progress to cancer. Serum antibodies to HPV oncoproteins are stable and specific markers that may be able to detect high-grade cervical intraepithelial neoplasia (CIN3). Biomarkers have potential as a rapid, point-of-care HPV screening tool for low resource areas in the way that traditional cytology cannot, and HPV DNA testing is not yet able to.
Methods: We have designed a multiplexed magnetics programmable bead ELISA (MagProBE) to profile the immune responses of the proteins from 11 high-risk HPV types and 2 low-risk types—106 genes in total. HPV genes were optimized for human expression and either built with PCR or commercially purchased, and cloned into the Gateway-compatible pANT7_cGST vector for in vitro transcription/translation (IVTT) in a MagProBE array. Anti-GST antibody (Ab) labeling was then used to measure gene expression.
Results: 53/106 (50%) HPV genes have been cloned and tested for expression of protein. 91% of HPV proteins expressed at levels above the background control (MFI = 2288), and the mean expression was MFI = 4318. Codon-optimized genes have also shown a 20% higher expression over non-codon optimized genes.
Conclusion: Although this research is ongoing, it suggests that gene optimization may improve IVTT expression of HPV proteins in human HeLa lysate. Once the remaining HPV proteins have been expression confirmed, the cDNA for each gene will be printed onto slides and tested in serologic assays to identify potential Ab biomarkers to CIN3.
ContributorsResnik, Jack Isiah (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Purushothaman, Immanuel (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
137667-Thumbnail Image.png
Description
The long-term survival of patients with glioblastoma multiforme is compromised by the tumor's proclivity for local invasion into the surrounding normal brain. These invasive cells escape surgery and display resistance to chemotherapeutic- and radiation-induced apoptosis. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member

The long-term survival of patients with glioblastoma multiforme is compromised by the tumor's proclivity for local invasion into the surrounding normal brain. These invasive cells escape surgery and display resistance to chemotherapeutic- and radiation-induced apoptosis. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, can stimulate glioma cell invasion and survival via binding to the fibroblast growth factor-inducible 14 (Fn14) receptor and subsequent activation of the Rac1/NF-kappaB pathway. In addition, we have reported previously that Fn14 is expressed at high levels in migrating glioma cells in vitro and invading glioma cells in vivo. Here we demonstrate that TWEAK can act as a chemotactic factor for glioma cells, a potential process to drive cell invasion into the surrounding brain tissue. Specifically, we detected a chemotactic migration of glioma cells to the concentration gradient of TWEAK. Since Src family kinases (SFK) have been implicated in chemotaxis, we next determined whether TWEAK:Fn14 engagement activated these cytoplasmic tyrosine kinases. Our data shows that TWEAK stimulation of glioma cells results in a rapid phosphorylation of the SFK member Lyn as determined by multiplex Luminex assay and verified by immunoprecipitation. Immunodepletion of Lyn by siRNA oligonucleotides suppressed the chemoattractive effect of TWEAK on glioma cells. We hypothesize that TWEAK secretion by cells present in the glioma microenvironment induce invasion of glioma cells into the brain parenchyma. Understanding the function and signaling of the TWEAK-Fn14 ligand-receptor system may lead to development of novel therapies to therapeutically target invasive glioma cells.
ContributorsJameson, Nathan Meade (Author) / Anderson, Karen (Thesis director) / Lake, Douglas (Committee member) / Tran, Nhan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137644-Thumbnail Image.png
Description
Our goal was to design a method to express soluble folded major histocompatibility complex (MHC) proteins using human cell line HeLa lysate with the novel 1-Step Human In Vitro Protein Expression by Thermo Scientific in the presence of β2 microglobulin (β2m) and antigenic peptide.
We confirmed that the soluble protein MHC-A2.1

Our goal was to design a method to express soluble folded major histocompatibility complex (MHC) proteins using human cell line HeLa lysate with the novel 1-Step Human In Vitro Protein Expression by Thermo Scientific in the presence of β2 microglobulin (β2m) and antigenic peptide.
We confirmed that the soluble protein MHC-A2.1 could be successfully attached to the Luminex magnetic beads and detected using the primary antibody anti-GST and the detection antibody goat mAb mouse PE. The average net MFI of the attached pA2.1-bead complex was 8182. Biotinylated A2.1 MHC complexes pre-folded with β2m and FLU M1 peptide (A2.1 monomers) were also successfully attached to Luminex magnetic beads and detected with BB7.2. The average net MFI of the detected A2.1 monmer-bead complexes was 318. The protein MHC complexes were multimerized on magnetic beads to create MHC tetramers and detected with BB7.2, PE labeled monoclonal antibody, via median fluorescent intensity with the Luminex platform. Varying protein, β2 microglobulin (β2m), and peptide concentrations were tested in a number of MHC-A2.1 protein refolding trials. Different antigenic peptides and attachment methods were also tested. However, none of the MHC-A2.1 protein folding and capture trials were successful. Although MHC-A2.1 complexes and recombinant MHC molecules could be attached to Luminex magnetic beads and be detected by Luminex arrays, soluble protein A2.1 could not be successfully expressed, refolded, captured onto Luminex beads, and detected. All refolding trials resulted in a net MFI of <25. The failed refolding and capture trials of A2.1 lead to the conclusion that human cell line HeLa lysate cannot be used to properly fold MHC molecules. However, efforts to refold the complexes onto Luminex magnetic beads are ongoing. We are also using the baculovirus expression system to refold soluble A2.1 lysate onto peptide-bead complexes.
ContributorsChang, Peter S (Author) / Anderson, Karen (Thesis director) / Chang, Yung (Committee member) / Sundaresan, Krishna (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
137766-Thumbnail Image.png
Description
Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in females worldwide, accounting for 23% of all new cancer cases and 14% of all total cancer deaths in 2008. Five tumor-normal pairs of primary breast epithelial cells were treated for infinite proliferation by

Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in females worldwide, accounting for 23% of all new cancer cases and 14% of all total cancer deaths in 2008. Five tumor-normal pairs of primary breast epithelial cells were treated for infinite proliferation by using a ROCK inhibitor and mouse feeder cells. Methods: Raw paired-end, 100x coverage RNA-Seq data was aligned to the Human Reference Genome Version 19 using BWA and Tophat. Gene differential expression analysis was completed using Cufflinks and Cuffdiff. Interactive Genome Viewer was used for data visualization. Results: 15 genes were found to be down-regulated by at least one log-fold change in 4/5 of tumor samples. 75 genes were found to be down-regulated in 3/5 of our tumor samples by at least one log-fold change. 11 genes were found to be up-regulated in 4/5 of our tumor samples, and 68 genes were identified to be up-regulated in 3/5 of the tumor samples by at least one-fold change. Conclusion: Expression changes in genes such as AZGP1, AGER, ALG11, and S1007 suggest a disruption in the glycosylation pathway. No correlation was found between Cufflink's Her2 gene-expression and DAKO score classification.
ContributorsHernandez, Fernando (Author) / Anderson, Karen (Thesis director) / Mangone, Marco (Committee member) / Park, Jin (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2013-05
137783-Thumbnail Image.png
Description
Oropharyngeal cancer (OPC) is the world's sixth most common cancer and in many cases is associated with infection with human papillomavirus (HPV) type 16. Antibodies (Abs) to HPV16 viral antigens are potential diagnostic biomarkers of HPV-associated OPC (HPV OPC). A custom multiplexed bead array assay was used to detect Abs

Oropharyngeal cancer (OPC) is the world's sixth most common cancer and in many cases is associated with infection with human papillomavirus (HPV) type 16. Antibodies (Abs) to HPV16 viral antigens are potential diagnostic biomarkers of HPV-associated OPC (HPV OPC). A custom multiplexed bead array assay was used to detect Abs to HPV16 antigens E1, CE2, NE2, E4, E5, E6, E7, L1, and L2. Following extensive optimization of the assay, these genes were expressed as GST-fusion proteins and captured onto anti-GST magnetic beads. Serum was obtained from 256 OPC patients at the time of diagnosis and from 78 healthy controls. The median fluorescent intensity (MFI) was determined for each antigen and ratios of MFI to control GST-fusion protein were determined for each serum sample. Cutoff values were set as the mean + 3 SD of the MFIs of healthy controls and p-values were calculated using Wilcoxon unpaired and Fisher's exact test. Results of this experiment showed that HPV16 E1, CE2, NE2, E4, E6, and E7 Ab levels were elevated in OPC patients compared to controls (p<0.001), as were Ab levels to L1 (p = 0.013) and L2 (p = 0.023), per Fischer's exact test. Abs to CE2, NE2, E6, and E7 were identified as a potential biomarker panel for early detection of HPV OPC. For the 111 patients with known HPV+ tumors as measured by tumor PCR of E6 and/or E7, this assay had a sensitivity of 90% and specificity of 87% (AUC = 0.96). From these results, we conclude that custom bead array assays can be used to detect HPV16 Abs in patient sera, and we have identified a 4-Ab biomarker panel for the early detection of HPV OPC.
ContributorsGoulder, Alison Leigh (Author) / Anderson, Karen (Thesis director) / Lake, Douglas (Committee member) / Cheng, Julia (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137344-Thumbnail Image.png
Description
miRNAs are short non-coding regulatory RNAs that have an important roles in a wide range of biological processes. Dysfunction of miRNA regulation has also been shown to occur in diseases such as cancer. Despite the widespread influence of miRNAs in these contexts, the vast majority of miRNA targets are poorly

miRNAs are short non-coding regulatory RNAs that have an important roles in a wide range of biological processes. Dysfunction of miRNA regulation has also been shown to occur in diseases such as cancer. Despite the widespread influence of miRNAs in these contexts, the vast majority of miRNA targets are poorly characterized. The aim of this research project was to gain a better understating of miRNA targeting by using the model organism C. elegans. In order to do this I adapted a novel high-throughput assay to detect miRNA targets for use with the C. elegans 3`UTRome. As a proof of principle I performed this assay on 96 C. elegans 3`UTRs using high-throughput techniques. The results revealed miRNA interactions with two predicted 3`UTR targets for the miRNA lin-4 and ten unpredicted targets. The results also corroborated previous findings that certain worm miRNAs require special modifications to be expressed in human cells.
ContributorsKotagama, Kasuen Indrajith Bandara (Author) / Mangone, Marco (Thesis director) / Anderson, Karen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-12
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136571-Thumbnail Image.png
Description
The purpose of this project was to identify proteins associated with the migration and invasion of non-transformed MCF10A mammary epithelial cells with ectopically expressed missense mutations in p53. Because of the prevalence of TP53 missense mutations in basal-like and triple-negative breast cancer tumors, understanding the effect of TP53 mutations on

The purpose of this project was to identify proteins associated with the migration and invasion of non-transformed MCF10A mammary epithelial cells with ectopically expressed missense mutations in p53. Because of the prevalence of TP53 missense mutations in basal-like and triple-negative breast cancer tumors, understanding the effect of TP53 mutations on the phenotypic expression of human mammary epithelial cells may offer new therapeutic targets for those currently lacking in treatment options. As such, MCF10A mammary epithelial cells ectopically overexpressing structural mutations (G245S, H179R, R175H, Y163C, Y220C, and Y234C) and DNA-binding mutations (R248Q, R248W, R273C, and R273H) in the DNA-binding domain were selected for use in this project. Overexpression of p53 in the mutant cell lines was confirmed by western blot and q-PCR analysis targeting the V5 epitope tag present in the pLenti4 vector used to transduce TP53 into the mutant cell lines. Characterization of the invasion and migration phenotypes resulting from the overexpression of p53 in the mutant cell lines was achieved using transwell invasion and migration assays with Boyden chambers. Statistical analysis showed that three cell lines—DNA-contact mutants R248W and R273C and structural mutant Y220C—were consistently more migratory and invasive and demonstrated a relationship between the migration and invasion properties of the mutant cell lines. Two families of proteins were then explored: those involved in the Epithelial-Mesenchymal Transition (EMT) and matrix metalloproteinases (MMPs). Results of q-PCR and immunofluorescence analysis of epithelial marker E-cadherin and mesenchymal proteins Slug and Vimentin did not show a clear relationship between mRNA and protein expression levels with the migration and invasiveness phenotypes observed in the transwell studies. Results of western blotting, q-PCR, and zymography of MMP-2 and MMP-9 also did not show any consistent results indicating a definite relationship between MMPs and the overall invasiveness of the cells. Finally, two drugs were tested as possible treatments inhibiting invasiveness: ebselen and SBI-183. These drugs were tested on only the most invasive of the MCF10A p53 mutant cell lines (R248W, R273C, and Y220C). Results of invasion assay following 30 μM treatment with ebselen and SBI-183 showed that ebselen does not inhibit invasiveness; SBI-183, however, did inhibit invasiveness in all three cell lines tested. As such, SBI-183 will be an important compound to study in the future as a treatment that could potentially serve to benefit triple-negative or basal-like breast cancer patients who currently lack therapeutic treatment options.
ContributorsZhang, Kathie Q (Author) / LaBaer, Joshua (Thesis director) / Anderson, Karen (Committee member) / Gonzalez, Laura (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
148448-Thumbnail Image.png
Description

This paper discusses the theoretical approximation and attempted measurement of the quantum <br/>force produced by material interactions though the use of a tuning fork-based atomic force microscopy <br/>device. This device was built and orientated specifically for the measurement of the Casimir force as a <br/>function of separation distance using a

This paper discusses the theoretical approximation and attempted measurement of the quantum <br/>force produced by material interactions though the use of a tuning fork-based atomic force microscopy <br/>device. This device was built and orientated specifically for the measurement of the Casimir force as a <br/>function of separation distance using a piezo actuator for approaching and a micro tuning fork for the <br/>force measurement. This project proceeds with an experimental measurement of the ambient Casmir force <br/>through the use of a tuning fork-based AFM to determine its viability in measuring the magnitude of the <br/>force interaction between an interface material and the tuning fork probe. The ambient measurements <br/>taken during the device’s development displayed results consistent with theoretical approximations, while<br/>demonstrating the capability to perform high-precision force measurements. The experimental results<br/>concluded in a successful development of a device which has the potential to measure forces of <br/>magnitude 10−6 to 10−9 at nanometric gaps. To conclude, a path to material analysis using an approach <br/>stage, alternative methods of testing, and potential future experiments are speculated upon.

ContributorsMulkern, William Michael (Author) / Wang, Liping (Thesis director) / Kwon, Beomjin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148494-Thumbnail Image.png
Description

Neurological manifestations may be more prominent and have a larger role in ankylosing spondylitis than previously thought. Ankylosing Spondylitis is a rheumatic disease primarily identified by its autoinflammatory characteristics and is highly associated with the HLA-B27 gene. While it’s cause is not yet fully understood and it’s symptoms widely vary,

Neurological manifestations may be more prominent and have a larger role in ankylosing spondylitis than previously thought. Ankylosing Spondylitis is a rheumatic disease primarily identified by its autoinflammatory characteristics and is highly associated with the HLA-B27 gene. While it’s cause is not yet fully understood and it’s symptoms widely vary, neurological impairment is not uncommon. The neurological manifestations of Ankylosing Spondylitis include but are not limited to pain sensitization, altered brain phenotype, and disrupted cardiac conduction. Central and peripheral nervous system involvement may be more significant than previously thought and have the potential to cause demyelinating diseases, spinal cord, and nerve root injuries. Altered connectivity throughout various regions within the brain further exemplify the need for a better understanding of the disease and better treatment development. Higher instances of depression and dementia were also reported and coincide with not only a less active lifestyle, but altered brain activity. Studies on cardiac conduction and arrhythmias in AS patients revealed parasympathetic and sympathetic nervous system dysregulation. These studies have explored the possibility of new targets for treatment involving cardiac mechanisms. Treatments for diseases of a similar suspected pathology, new prospective targets for therapy, and a more thorough understanding of current treatments for the disease may be the key in providing more substantial relief. By further investigation in the role of the nervous system in Ankylosing Spondylitis, the disease may become more manageable for patients and greatly increase quality of life in the future.

ContributorsHill, Jordan (Author) / Newbern, Jason (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05