Matching Items (52)
Filtering by

Clear all filters

149976-Thumbnail Image.png
Description
The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known

The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known as Philadelphia chromosome positive (Ph+). Currently, Imatinib (selective Abl inhibitor) is used as therapy against CML and ALL. However, some patients may have malignancies which show resistance to Imatinib. Previous work displays that the transformation of progenitor B cells with the v-Abl oncogene of Abelson murine leukemia virus results in cell cycle progression, rapid proliferation, and potentially malignant transformation while preventing any further differentiation. Progenitor B cells transformed with the temperature-sensitive form of the v-Abl oncogene have served as a model to study cellular response to Imatinib treatment. After some manipulation, very few cells were forced to progress to malignancy, forming tumor in vivo. These cells were no long sensitive to v-Abl inactivation, resembling the Imatinib resistant ALL. Autophagy is the process by which proteins and organelles are broken-down and recycled within the eukaryotic cell and has been hypothesized to play a part in cancer cell survival and drug-resistance. LC3 processing is a widely accepted marker of autophagy induction and progression. It has also been shown that Imatinib treatment of Ph+ leukemia can induce autophagy. In this study, we examined the autophagy induction in response to v-Abl inactivation in a Ph+-B-ALL cell model that shows resistance to Imatinib. In particular, we wonder whether the tumor cell line resistant to v-Abl inactivation may acquire a high level of autophagy to become resistant to apoptosis induced by v-Abl inactivation, and thus become addicted to autophagy. Indeed, this tumor cell line displays a high basal levels of LC3 I and II expression, regardless of v-Abl activity. We further demonstrated that inhibition of the autophagy pathway enhances the tumor line's sensitivity to Imatinib, resulting in cell cycle arrest and massive apoptosis. The combination of autophagy and Abl inhibitions may serve as an effective therapy for BCR-Abl positive CML.
ContributorsArkus, Nohea (Author) / Chang, Yung (Thesis advisor) / Kusumi, Kenro (Committee member) / Lake, Douglas (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2011
151797-Thumbnail Image.png
Description
The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve

The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve as a first line of defense. To date, over 1,000 AMPs of various natures have been predicted or experimentally characterized. Their potent bactericidal activities and broad-based target repertoire make them a promising next-generation pharmaceutical therapy to combat bacterial pathogens. It is important to understand the molecular mechanisms, both genetic and physiological, that bacteria employ to circumvent the bactericidal activities of AMPs. These understandings will allow researchers to overcome challenges posed with the development of new drug therapies; as well as identify, at a fundamental level, how bacteria are able to adapt and survive within varied host environments. Here, results are presented from the first reported large scale, systematic screen in which the Keio collection of ~4,000 Escherichia coli deletion mutants were challenged against physiologically significant AMPs to identify genes required for resistance. Less than 3% of the total number of genes on the E. coli chromosome was determined to contribute to bacterial resistance to at least one AMP analyzed in the screen. Further, the screen implicated a single cellular component (enterobacterial common antigen, ECA) and a single transporter system (twin-arginine transporter, Tat) as being required for resistance to each AMP class. Using antimicrobial resistance as a tool to identify novel genetic mechanisms, subsequent analyses were able to identify a two-component system, CpxR/CpxA, as a global regulator in bacterial resistance to AMPs. Multiple previously characterized CpxR/A members, as well as members found in this study, were identified in the screen. Notably, CpxR/A was found to transcriptionally regulate the gene cluster responsible for the biosynthesis of the ECA. Thus, a novel genetic mechanism was uncovered that directly correlates with a physiologically significant cellular component that appears to globally contribute to bacterial resistance to AMPs.
ContributorsWeatherspoon-Griffin, Natasha (Author) / Shi, Yixin (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Misra, Rajeev (Committee member) / Nickerson, Cheryl (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
151359-Thumbnail Image.png
Description
Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are

Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are generated by genomic mutations or abnormal RNA processing, which cause a portion of a normal protein to be translated out of frame. The concept of the prophylactic cancer vaccine is to develop a general cancer vaccine that could prevent healthy people from developing different types of cancer. We have discovered a set of cancer specific FS antigens. One of the FS candidates, structural maintenance of chromosomes protein 1A (SMC1A) FS, could start to accumulate at early stages of tumor and be specifically exposed to the immune system by tumor cells. Prophylactic immunization with SMC1A-FS could significantly inhibit primary tumor development in different murine tumor models and also has the potential to inhibit tumor metastasis. The SMC1A-FS transcript was detected in the plasma of the 4T1/BALB/c mouse tumor model. The tumor size was correlated with the transcript ratio of the SMC1A-FS verses the WT in plasma, which could be measured by regular RT-PCR. This unique cancer biomarker has a practical potential for a large population cancer screen, as well as clinical tumor monitoring. With a set of mimotope peptides, antibodies against SMC1A-FS peptide were detected in different cancer patients, including breast cancer, pancreas cancer and lung cancer with a 53.8%, 56.5% and 12.5% positive rate respectively. This suggested that the FS antibody could be a biomarker for early cancer detection. The characterization of SMC1A suggested that: First, the deficiency of the SMC1A is common in different tumors and able to promote tumor initiation and development; second, the FS truncated protein may have nucleolus function in normal cells. Mis-control of this protein may promote tumor development. In summary, we developed a systematic general cancer prevention strategy through the variety immunological and molecular methods. The results gathered suggest the SMC1A-FS may be useful for the detection and prevention of cancer.
ContributorsShen, Luhui (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Miller, Laurence (Committee member) / Sykes, Kathryn (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2012
150658-Thumbnail Image.png
Description
V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2)

V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.
ContributorsWang, Guannan (Author) / Chang, Yung (Thesis advisor) / Levitus, Marcia (Committee member) / Misra, Rajeev (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2012
150705-Thumbnail Image.png
Description
Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic

Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic expression system. Vectors carrying this sequence in a monocistronic reporter plasmid produce >1,000-fold more protein than equivalent vectors with conventional vaccinia promoters. Initial mechanistic studies indicate that high protein expression results from dual activity that impacts both transcription and translation. I suggest that this motif represents a powerful new tool in vaccinia-based protein expression and vaccine development technology.
ContributorsFlores, Julia Anne (Author) / Chaput, John C (Thesis advisor) / Jacobs, Bertram (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2012
151143-Thumbnail Image.png
Description
Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of

Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of these three proteins (and many of their homologs) are known, the exact mechanisms of interaction are still poorly understood. By mutational analysis of the TolC turn 1 residues, a drug hypersensitive mutant has been identified which is defective in functional interactions with AcrA and AcrB. Antibiotic resistant revertants carry alterations in both TolC and AcrA act by stabilizing functional complex assembly and opening of the TolC aperture, as monitored by stability of a labile TolC mutant and sensitivity to vancomycin, respectively. Alterations in the AcrB periplasmic hairpin loops lead to a similar antibiotic hypersensitivity phenotype and destabilized complex assembly. Likewise, alterations in TolC which constitutively open the aperture suppress this antibiotic sensitivity. Suppressor alterations in AcrA and AcrB partially restore antibiotic resistance by mediating stability of the complex. The AcrA suppressor alterations isolated in these studies map to the three crystallized domains and it is concluded they alter the AcrA conformation such that it is permanently fixed in an active state, which wild type only transiently goes through when activated by AcrB. Through this genetic evidence, a direct interaction between TolC and AcrB which is stabilized by AcrA has been proposed. In addition to stabilizing the interactions between TolC and AcrB, AcrA is also responsible for triggering opening of the TolC aperture by mediating energy flow from AcrB to TolC. By permanently altering the conformation of AcrA, suppressor mutants allow defective TolC or AcrB mutants to regain functional interactions lost by the initial mutations. The data provide the genetic proof for direct interaction between AcrB and that AcrA mediated opening of TolC requires AcrB as a scaffold.
ContributorsWeeks, Jon William (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Shi, Yixin (Committee member) / Clark-Curtiss, Josephine (Committee member) / Arizona State University (Publisher)
Created2012
149369-Thumbnail Image.png
Description
Protein folding is essential in all cells, and misfolded proteins cause many diseases. In the Gram-negative bacterium Escherichia coli, protein folding must be carefully controlled during envelope biogenesis to maintain an effective permeability barrier between the cell and its environment. This study explores the relationship between envelope biogenesis

Protein folding is essential in all cells, and misfolded proteins cause many diseases. In the Gram-negative bacterium Escherichia coli, protein folding must be carefully controlled during envelope biogenesis to maintain an effective permeability barrier between the cell and its environment. This study explores the relationship between envelope biogenesis and cell stress, and the return to homeostasis during envelope stress. A major player in envelope biogenesis and stress response is the periplasmic protease DegP. Work presented here explores the growth phenotypes of cells lacking degP, including temperature sensitivity and lowered cell viability. Intriguingly, these cells also accumulate novel cytosolic proteins in their envelope not present in wild-type. Association of novel proteins was found to be growth time- and temperature-dependent, and was reversible, suggesting a dynamic nature of the envelope stress response. Two-dimensional gel electrophoresis of envelopes followed by mass spectrometry identified numerous cytoplasmic proteins, including the elongation factor/chaperone TufA, illuminating a novel cytoplasmic response to envelope stress. A suppressor of temperature sensitivity was characterized which corrects the defect caused by the lack of degP. Through random Tn10 insertion analysis, aribitrarily-primed polymerase chain reaction and three-factor cross, the suppressor was identified as a novel duplication-truncation of rpoE, here called rpoE'. rpoE' serves to subtly increase RpoE levels in the cell, resulting in a slight elevation of the SigmaE stress response. It does so without significantly affecting steady-state levels of outer membrane proteins, but rather by increasing proteolysis in the envelope independently of DegP. A multicopy suppressor of temperature sensitivity in strains lacking degP and expressing mutant OmpC proteins, yfgC, was characterized. Bioinformatics suggests that YfgC is a metalloprotease, and mutation of conserved domains resulted in mislocalization of the protein. yfgC-null mutants displayed additive antibiotic sensitivity and growth defects when combined with null mutation in another periplasmic chaperone, surA, suggesting that the two act in separate pathways during envelope biogenesis. Overexpression of YfgC6his altered steady-state levels of mutant OmpC in the envelope, showing a direct relationship between it and a major constituent of the envelope. Curiously, purified YfgC6his showed an increased propensity for crosslinking in mutant, but not in a wild-type, OmpC background.
ContributorsLeiser, Owen Paul (Author) / Misra, Rajeev (Thesis advisor) / Jacobs, Bertram (Committee member) / Chang, Yung (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2010
149541-Thumbnail Image.png
Description
Like most other phototrophic organisms the cyanobacterium Synechocystis sp. PCC 6803 produces carotenoids. These pigments often bind to proteins and assume various functions in light harvesting, protection from reactive oxygen species (ROS) and protein stabilization. One hypothesis was that carotenoids bind to the surface (S-)layer protein. In this work the

Like most other phototrophic organisms the cyanobacterium Synechocystis sp. PCC 6803 produces carotenoids. These pigments often bind to proteins and assume various functions in light harvesting, protection from reactive oxygen species (ROS) and protein stabilization. One hypothesis was that carotenoids bind to the surface (S-)layer protein. In this work the Synechocystis S-layer protein was identified as Sll1951 and the effect on the carotenoid composition of this prokaryote by disruption of sll1951 was studied. Loss of the S-layer, which was demonstrated by electron microscopy, did not result in loss of carotenoids or changes in the carotenoid profile of the mutant, which was shown by HPLC and protein analysis. Although Δsll1951 was more susceptible to osmotic stress than the wild type, the general viability of the mutant remained unaffected. In a different study a combination of mutants having single or multiple deletions of putative carotenoid cleavage dioxygenase (CCD) genes was created. CCDs are presumed to play a role in the breakdown of carotenoids or apo-carotenoids. The carotenoid profiles of the mutants that were grown under conditions of increased reactive oxygen species were analyzed by HPLC. Pigment lifetimes of all strains were estimated by 13C-labeling. Carotenoid composition and metabolism were similar in all strains leading to the conclusion that the deleted CCDs do not affect carotenoid turnover in Synechocystis. The putative CCDs either do not fulfill this function in cyanobacteria or alternative pathways for carotenoid degradation exist. Finally, slr0941, a gene of unknown function but a conserved genome position in many cyanobacteria downstream of the δ-carotene desaturase, was disrupted. Initially, the mutant strain was impaired in growth but displayed a rather normal carotenoid content and composition, but an apparent second-site mutation occurred infrequently that restored growth rates and caused an accumulation of carotenoid isomers not found in the wild type. Based on the obtained data a role of the slr0941 gene in carotenoid binding/positioning for isomerization and further conversion to mature carotenoids is suggested.
ContributorsTrautner, Christoph (Author) / Vermaas, Willem Fj (Thesis advisor) / Chandler, Douglas E. (Committee member) / Misra, Rajeev (Committee member) / Bingham, Scott E (Committee member) / Arizona State University (Publisher)
Created2011
149455-Thumbnail Image.png
Description
Coronaviruses are medically important viruses that cause respiratory and enteric infections in humans and animals. The recent emergence through interspecies transmission of severe acute respiratory syndrome coronavirus (SARS-CoV) strongly supports the need for development of vaccines and antiviral reagents. Understanding the molecular details of virus assembly is an attractive target

Coronaviruses are medically important viruses that cause respiratory and enteric infections in humans and animals. The recent emergence through interspecies transmission of severe acute respiratory syndrome coronavirus (SARS-CoV) strongly supports the need for development of vaccines and antiviral reagents. Understanding the molecular details of virus assembly is an attractive target for development of such therapeutics. Coronavirus membrane (M) proteins constitute the bulk of the viral envelope and play key roles in assembly, through M-M, M-spike (S) and M-nucleocapsid (N) interactions. M proteins have three transmembrane domains, flanked by a short amino-terminal domain and a long carboxy-terminal tail located outside and inside the virions, respectively. Two domains are apparent in the long tail - a conserved region (CD) at the amino end and a hydrophilic, charged carboxy-terminus (HD). We hypothesized that both domains play functionally important roles during assembly. A series of changes were introduced in the domains and the functional impacts were studied in the context of the virus and during virus-like particle (VLP) assembly. Positive charges in the CD gave rise to viruses with neutral residue replacements that exhibited a wild-type phenotype. Expression of the mutant proteins showed that neutral, but not positive, charges formed VLPs and coexpression with N increased output. Alanine substitutions resulted in viruses with crippled phenotypes and proteins that failed to assemble VLPs or to be rescued into the envelope. These viruses had partially compensating changes in M. Changes in the HD identified a cluster of three key positive charges. Viruses could not be recovered with negatively charged amino acid substitutions at two of the positions. While viruses were recovered with a negative charge substitution at one of the positions, these exhibited a severely crippled phenotype. Crippled mutants displayed a reduction in infectivity. Results overall provide new insight into the importance of the M tail in virus assembly. The CD is involved in fundamental M-M interactions required for envelope formation. These interactions appear to be stabilized through interactions with the N protein. Positive charges in the HD also play an important role in assembly of infectious particles.
ContributorsArndt, Ariel L (Author) / Hogue, Brenda G (Thesis advisor) / Jacobs, Bertram (Committee member) / Francisco, Wilson (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2010
149418-Thumbnail Image.png
Description
Host organisms have evolved multiple mechanisms to defend against a viral infection and likewise viruses have evolved multiple methods to subvert the host's anti-viral immune response. Vaccinia virus (VACV) is known to contain numerous proteins involved in blocking the cellular anti-viral immune response. The VACV E3L protein is

Host organisms have evolved multiple mechanisms to defend against a viral infection and likewise viruses have evolved multiple methods to subvert the host's anti-viral immune response. Vaccinia virus (VACV) is known to contain numerous proteins involved in blocking the cellular anti-viral immune response. The VACV E3L protein is important for inhibiting the anti-viral immune response and deletions within this gene lead to a severe attenuation. In particular, VACV containing N-terminal truncations in E3L are attenuated in animal models and fail to replicate in murine JC cells. Monkeypox virus (MPXV) F3L protein is a homologue of the VACV E3L protein, however it is predicted to contain a 37 amino acid N-terminal truncation. Despite containing an N-terminal truncation in the E3L homologue, MPXV is able to inhibit the anti-viral immune response similar to wild-type VACV and able to replicate in JC cells. This suggests that MPXV has evolved another mechanism(s) to counteract host defenses and promote replication in JC cells. MPXV produces less dsRNA than VACV during the course of an infection, which may explain why MPXV posses a phenotype similar to VACV, despite containing a truncated E3L homologue. The development of oncolytic viruses as a therapy for cancer has gained interest in recent years. Oncolytic viruses selectively replicate in and destroy cancerous cells and leave normal cells unharmed. Many tumors possess dysregulated anti-viral signaling pathways, since these pathways can also regulate cell growth. Creating a mutation in the N-terminus of the VACV-E3L protein generates an oncolytic VACV that depends on dysregulated anti-viral signaling pathways for replication allowing for direct targeting of the cancerous cells. VACV-E3Ldel54N selectively replicates in numerous cancer cells lines and not in the normal cell lines. Additionally, VACV-E3Ldel54N is safe and effective in causing tumor regression in a xenograph mouse model. Lastly, VACV-E3Ldel54N was capable of spreading from the treated tumors to the untreated tumors in both a xenograph and syngeneic mouse model. These data suggest that VACV-E3Ldel54N could be an effective oncolytic virus for the treatment of cancer.
ContributorsArndt, William D (Author) / Jacobs, Bertram (Thesis advisor) / Curtiss Iii, Roy (Committee member) / Chang, Yung (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2010