Matching Items (7)

127890-Thumbnail Image.png

Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

Description

The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic

The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed.
Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution.
Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths there. Thus, larger scale forcings that impact cloud macrophysical properties, as well as enhanced aerosol particles, are important in determining cloud droplet size and cloud albedo.
Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, some of which may initiate drizzle, contain the largest aerosol particles. Geometric mean diameters of droplet residual particles were larger than those of the below-cloud and above cloud distributions. However, a wide range of particle sizes can act as droplet nuclei in these stratocumulus clouds. A detailed LES microphysical model was used to show that this can occur without invoking differences in chemical composition of cloud-nucleating particles.

Contributors

Agent

Created

Date Created
  • 2013-03-05

129631-Thumbnail Image.png

Characterization of light-absorbing carbon particles at three altitudes in East Asian outflow by transmission electron microscopy

Description

The morphology, microstructure, and composition of the submicron fraction of individual light-absorbing carbon (LAC) particles collected by research aircraft during the ACE-Asia (Asian Pacific Regional Aerosol Characterization Experiment) project above

The morphology, microstructure, and composition of the submicron fraction of individual light-absorbing carbon (LAC) particles collected by research aircraft during the ACE-Asia (Asian Pacific Regional Aerosol Characterization Experiment) project above the Yellow Sea at altitudes of 120, 450 and 1500 m are investigated by transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). Two types of carbonaceous particles, small spherule soot with graphitic spherules and amorphous carbonaceous spheres (brown carbon), are found at all altitudes in high concentration. For soot particles, emphasis of the study is on the component subparticles (spherules). The nanoscopic structures of the small spherule soot show no significant difference at three altitudes although the size distribution of primary spherules showed that 70% of the total volume lies in the ranges 30–50, 50–85 and 30–50 nm, respectively. For the amorphous carbonaceous spheres, 70% of the total volume from three altitudes lies in the range 200–350, 160–470 and 150–320 nm, respectively. Within the size fraction studied (submicron, with most particles in the range 50 to 500 nm) the number concentration ratios of the amorphous carbonaceous spheres to primary spherules in soot at altitudes of 120, 450 and 1500 m are about 1, 1.5 and 10, respectively and their volume ratios are about 260, 50 and 1400. Lower relative concentrations of large spherule soot with intermediate graphitic structure were observed at 120 m. Also, low relative number concentrations of carbon cenospheres were observed at 120 and 1500 m. A key result of the study is that in vertically stratified outflow from East Asia, the character of LAC may have strong variance with altitude thus resulting in optical characteristics that vary with altitude. Also, apparent "aging" of LAC deduced from samples at multiple ground stations may instead reflect differences in the original carbon aerosols.

Contributors

Agent

Created

Date Created
  • 2013-06-04

154025-Thumbnail Image.png

Numerical study of the effect of urbanization on the climate

Description

This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are

This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For each city, the land-use maps of 1985 and 2010 from Landsat satellite observation, and a projected land-use map for 2030, are used to represent the past, present, and future. An additional set of simulations for Las Vegas, the largest of the five cities, uses the NLCD 1992 and 2006 land-use maps and an idealized historical land-use map with no urban coverage for 1900.

The study finds that urbanization in Las Vegas produces a classic urban heat island (UHI) at night but a minor cooling during the day. A further analysis of the surface energy balance shows that the decrease in surface Albedo and increase effective emissivity play an important role in shaping the local climate change over urban areas. The emerging urban structures slow down the diurnal wind circulation over the city due to an increased effective surface roughness. This leads to a secondary modification of temperature due to the interaction between the mechanical and thermodynamic effects of urbanization.

The simulations for the five desert cities for 1985 and 2010 further confirm a common pattern of the climatic effect of urbanization with significant nighttime warming and moderate daytime cooling. This effect is confined to the urban area and is not sensitive to the size of the city or the detail of land cover in the surrounding areas. The pattern of nighttime warming and daytime cooling remains robust in the simulations for the future climate of the five cities using the projected 2030 land-use maps. Inter-city differences among the five urban areas are discussed.

Contributors

Agent

Created

Date Created
  • 2015

152890-Thumbnail Image.png

Synthesis and carbon dioxide adsorption properties of amine modified particulate silica aerogel sorbents

Description

Post-combustion carbon capture is a viable option for reducing CO2 greenhouse gas emissions, and one potentially promising technology for this route is adsorption using chemically and physically based sorbents. A

Post-combustion carbon capture is a viable option for reducing CO2 greenhouse gas emissions, and one potentially promising technology for this route is adsorption using chemically and physically based sorbents. A number of exceptional CO2 sorbents materials have been prepared including metal organic frameworks, zeolites, and carbon based materials. One particular group of capable materials are amine based solid sorbents that has shown to possess high adsorption capacities and favorable adsorption kinetics. A key variable in the synthesis of an amine based sorbent is the support which acts as the platform for the amine modification. Aerogels, due to their high porosities and surface areas, appear to be a promising support for an amine modified CO2 sorbent. Therefore, in order to develop a commercially viable CO2 sorbent, particulate aerogels manufactured by Cabot Corporation through an economical and proprietary ambient drying process were modified with amines using a variety of functionalization methods. Two methods of physical impregnation of the amino polymer TEPA were performed in order to observe the performance as well as understand the effects of how the TEPA distribution is affected by the method of introduction. Both samples showed excellent adsorption capacities but poor cyclic stability for lack of any covalent attachment. Furthermore the method of TEPA impregnation seems to be independent on how the polymer will be distributed in the pore space of aerogel. The last two methods utilized involved covalently attaching amino silanes to the surface silanols of the aerogel. One method was performed in the liquid phase under anhydrous and hydrous conditions. The materials developed through the hydrous method have much greater adsorption capacities relative to the anhydrous sample as a result of the greater amine content present in the hydrous sample. Water is another source of silylation where additional silanes can attach and polymerize. These samples also possessed stable cyclic stability after 100 adsorption/regeneration cycles. The other method of grafting was performed in the gas phase through ALD. These samples possessed exceptionally high amine efficiencies and levels of N content without damaging the microstructure of the aerogel in contrast to the liquid phase grafted sorbents.

Contributors

Agent

Created

Date Created
  • 2014

151543-Thumbnail Image.png

Climate variability and trend on interannual-to-centennial timescales from global observations and atmosphere-ocean model simulations

Description

The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations

The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases since 1995 with CMIP5 being the state of the art. In parallel, an organized effort to consolidate all observational data in the past century culminates in the creation of several "reanalysis" datasets that are considered the closest representation of the true observation. This study compared the climate variability and trend in the climate model simulations and observations on the timescales ranging from interannual to centennial. The analysis focused on the dynamic climate quantity of zonal-mean zonal wind and global atmospheric angular momentum (AAM), and incorporated multiple datasets from reanalysis and the most recent CMIP3 and CMIP5 archives. For the observation, the validation of AAM by the length-of-day (LOD) and the intercomparison of AAM revealed a good agreement among reanalyses on the interannual and the decadal-to-interdecadal timescales, respectively. But the most significant discrepancies among them are in the long-term mean and long-term trend. For the simulations, the CMIP5 models produced a significantly smaller bias and a narrower ensemble spread of the climatology and trend in the 20th century for AAM compared to CMIP3, while CMIP3 and CMIP5 simulations consistently produced a positive trend for the 20th and 21st century. Both CMIP3 and CMIP5 models produced a wide range of the magnitudes of decadal and interdecadal variability of wind component of AAM (MR) compared to observation. The ensemble means of CMIP3 and CMIP5 are not statistically distinguishable for either the 20th- or 21st-century runs. The in-house atmospheric general circulation model (AGCM) simulations forced by the sea surface temperature (SST) taken from the CMIP5 simulations as lower boundary conditions were carried out. The zonal wind and MR in the CMIP5 simulations are well simulated in the AGCM simulations. This confirmed SST as an important mediator in regulating the global atmospheric changes due to GHG effect.

Contributors

Agent

Created

Date Created
  • 2013

152007-Thumbnail Image.png

Improving climate projections through the assessment of model uncertainty and bias in the global water cycle

Description

The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand

The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the Coupled Model Intercomparison Project (CMIP); these simulations are ensemble-averaged to construct projections for the 21st century climate. However, a significant degree of bias and variability in the model simulations for the 20th century climate is well-known at both global and regional scales. Based on that insight, this study provides an alternative approach for constructing climate projections that incorporates knowledge of model bias. This approach is demonstrated to be a viable alternative which can be easily implemented by water resource managers for potentially more accurate projections. Tests of the new approach are provided on a global scale with an emphasis on semiarid regional studies for their particular vulnerability to water resource changes, using both the former CMIP Phase 3 (CMIP3) and current Phase 5 (CMIP5) model archives. This investigation is accompanied by a detailed analysis of the dynamical processes and water budget to understand the behaviors and sources of model biases. Sensitivity studies of selected CMIP5 models are also performed with an atmospheric component model by testing the relationship between climate change forcings and model simulated response. The information derived from each study is used to determine the progressive quality of coupled climate models in simulating the global water cycle by rigorously investigating sources of model bias related to the moisture budget. As such, the conclusions of this project are highly relevant to model development and potentially may be used to further improve climate projections.

Contributors

Agent

Created

Date Created
  • 2013

149707-Thumbnail Image.png

Carbonate-ceramic dual-phase membranes for high temperature carbon dioxide separation

Description

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.

Contributors

Agent

Created

Date Created
  • 2011