Matching Items (126)
Filtering by

Clear all filters

157354-Thumbnail Image.png
Description
The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by

The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by 2027. In this dissertation, a framework is developed to assess energy savings techniques to help policy-makers make educated decisions. The Kuwait residential energy outlook is studied by modeling the baseline energy consumption and the diffusion of energy conservation measures (ECMs) to identify the impacts on household energy consumption and CO2 emissions.



The energy resources and power generation in Kuwait were studied. The characteristics of the residential buildings along with energy codes of practice were investigated and four building archetypes were developed. Moreover, a baseline of end-use electricity consumption and demand was developed. Furthermore, the baseline energy consumption and demand were projected till 2040. It was found that by 2040, energy consumption would double with most of the usage being from AC. While with lighting, there is a negligible increase in consumption due to a projected shift towards more efficient lighting. Peak demand loads are expected to increase by an average growth rate of 2.9% per year. Moreover, the diffusion of different ECMs in the residential sector was modeled through four diffusion scenarios to estimate ECM adoption rates. ECMs’ impact on CO2 emissions and energy consumption of residential buildings in Kuwait was evaluated and the cost of conserved energy (CCE) and annual energy savings for each measure was calculated. AC ECMs exhibited the highest cumulative savings, whereas lighting ECMs showed an immediate energy impact. None of the ECMs in the study were cost effective due to the high subsidy rate (95%), therefore, the impact of ECMs at different subsidy and rebate rates was studied. At 75% subsidized utility price and 40% rebate only on appliances, most of ECMs will be cost effective with high energy savings. Moreover, by imposing charges of $35/ton of CO2, most ECMs will be cost effective.
ContributorsAlajmi, Turki (Author) / Phelan, Patrick E (Thesis advisor) / Kaloush, Kamil (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Hajiah, Ali (Committee member) / Arizona State University (Publisher)
Created2019
156880-Thumbnail Image.png
Description

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially improves the bonding between aggregate and asphalt by modifying the aggregate structure from hydrophilic to hydrophobic contributing to increased moisture resistance of conventional asphalt mixtures. Use of Organosilane also reduces the mixing and compaction temperatures and facilitates similar compaction effort at lower temperatures. The objective of this research study was first to perform a Superpave mix design for Crumb Rubber Modified Binder (CRMB) gap-graded mixture with and without Organosilane; and secondly, analyse the performance of CRMB mixtures with and without Organosilane by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to create the gap-graded Hot Mix Asphalt (HMA) mixtures for this study. Laboratory tests included rotational viscometer binder test and mixtures tests: dynamic modulus, flow number, tensile strength ratio, and C* fracture test. Results from the tests indicated that the addition of Organosilane facilitated easier compaction efforts despite reduced mixing and compaction temperatures. Organosilane also modestly increased the moisture susceptibility and resistance to crack propagation yet retaining equal rutting resistance of the CRMB mixtures.

ContributorsSrinivasan, Aswin Kumar Kumar (Author) / Kaloush, Kamil (Thesis advisor) / Medina, Jose R. (Jose Roberto) (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
156729-Thumbnail Image.png
Description

Crumb rubber use in asphalt mixtures using wet process technology has been in practice for years in the United States with good performance history; however, it has some drawbacks that include the need for special blending equipment, high rubber-binder temperatures, and longer waiting time at mixing plants. Pre-treated crumb rubber

Crumb rubber use in asphalt mixtures using wet process technology has been in practice for years in the United States with good performance history; however, it has some drawbacks that include the need for special blending equipment, high rubber-binder temperatures, and longer waiting time at mixing plants. Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier known as Reacted and Activated Rubber (RAR) is one such technology. RAR (industrially known as “RARX”) acts like an Enhanced Elastomeric Asphalt Extender to improve the engineering properties of the binder and mixtures. It is intended to be used in a dry mixing process with the purpose of simplifying mixing at the asphalt plant. The objective of this research study was first to perform a Superpave mix design for determination of optimum asphalt content with 35% RAR by weight of binder; and secondly, analyse the performance of RAR modified mixtures prepared using the dry process against Crumb Rubber Modified (CRM) mixtures prepared using the wet process by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to fabricate RAR and CRM mixtures and Performance Grade (PG) 70-10 was used to fabricate Control mixtures for this study. Laboratory tests included: Dynamic Modulus Test, Flow Number Test, Tensile Strength Ratio, Axial Cyclic Fatigue Test and C* Fracture Test. Observations from test results indicated that RAR mixes prepared through the dry process had excellent fatigue life, moisture resistance and cracking resistance compared to the other mixtures.

ContributorsShah, Janak (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffery (Committee member) / Arizona State University (Publisher)
Created2018
156736-Thumbnail Image.png
Description

Asphalt binder is a complex viscoelastic hydrocarbon, whose performance depends upon interaction between its physical and chemical properties, both of which are equally important to the successful understanding of the material. Researchers have proposed various models linking linear viscoelastic (LVE) and microstructural parameters. However, none of these parameters provide insight

Asphalt binder is a complex viscoelastic hydrocarbon, whose performance depends upon interaction between its physical and chemical properties, both of which are equally important to the successful understanding of the material. Researchers have proposed various models linking linear viscoelastic (LVE) and microstructural parameters. However, none of these parameters provide insight into the relationship in the non- linear viscoelastic NLVE domain. The main goals of this dissertation are two fold. The first goal is to utilize the technique of Laser Desorption Mass Spectroscopy (LDMS) to relate the molecular structure of asphalt binders to its viscoelastic properties. The second goal of the study is to utilize different NLVE characterization tools and analysis procedures to get a clear understanding of the NLVE behavior of the asphalt binders. The goals of the study are divided into four objectives; 1) Performing the LDMS test on asphalt binder to develop at the molecular weight distributions for different asphalts, 2) Characterizing LVE properties of Arizona asphalt binders, 3) Development of relationship between molecular structure and linear viscoelasticity, 4) Understanding NLVE behavior of asphalt binders through three different characterization methods and analysis techniques.

In this research effort, a promising physico-chemical relationship is developed between number average molecular weight and width of relaxation spectrum by utilizing the data from LVE characterization and the molecular weight distribution from LDMS. The relationship states that as the molecular weight of asphalt binders increase, they require more time to relax the developed stresses. Also, NLVE characterization was carried out at intermediate and high temperatures using three different tests, time sweep fatigue test, repeated stress/strain sweep test and Multiple Stress Creep and Recovery (MSCR) test. For the intermediate temperature fatigue tests, damage characterization was conducted by applying the S-VECD model and it was found that aged binders possess greater fatigue resistance than unaged binders. Using the high temperature LAOS tests, distortion was observed in the stress-strain relationships and the data was analyzed using a Fourier transform based tool called MITlaos, which deconvolves stress strain data into harmonic constituents and aids in identification of non-linearity by detecting higher order harmonics. Using the peak intensities observed at higher harmonic orders, non-linearity was quantified through a parameter termed as “Q”, which in future applications can be used to relate to asphalt chemical parameters. Finally, the last NLVE characterization carried out was the MSCR test, where the focus was on the scrutiny of the Jnrdiff parameter. It was found that Jnrdiff is not a capable parameter to represent the stress-sensitivity of asphalt binders. The developed alternative parameter Jnrslope does a better job of not only being a representative parameter of stress sensitivity but also for temperature sensitivity.

ContributorsGundla, Akshay (Author) / Underwood, Benjamin S (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael S. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2018
157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy”

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

ContributorsAldaaja, Mohammad (Author) / El Asmar, Mounir (Thesis advisor) / Buch, Rajesh (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2019
157309-Thumbnail Image.png
Description
Anthropogenic land use has irrevocably transformed the natural systems on which humankind relies. Understanding where, why, and how social and economic processes drive globally-important land-use changes, from deforestation to urbanization, has advanced substantially. Illicit and clandestine activities--behavior that is intentionally secret because it breaks formal laws or violates informal norms--are

Anthropogenic land use has irrevocably transformed the natural systems on which humankind relies. Understanding where, why, and how social and economic processes drive globally-important land-use changes, from deforestation to urbanization, has advanced substantially. Illicit and clandestine activities--behavior that is intentionally secret because it breaks formal laws or violates informal norms--are poorly understood, however, despite the recognition of their significant role in land change. This dissertation fills this lacuna by studying illicit and clandestine activity and quantifying its influence on land-use patterns through examining informal urbanization in Mexico City and deforestation Central America. The first chapter introduces the topic, presenting a framework to examine illicit transactions in land systems. The second chapter uses data from interviews with actors involved with land development in Mexico City, demonstrating how economic and political payoffs explain the persistence of four types of informal urban expansion. The third chapter examines how electoral politics influence informal urban expansion and land titling in Mexico City using panel regression. Results show land title distribution increases just before elections, and more titles are extended to loyal voters of the dominant party in power. Urban expansion increases with electoral competition in local elections for borough chiefs and legislators. The fourth chapter tests and confirms the hypothesis that narcotrafficking has a causal effect on forest loss in Central America from 2001-2016 using two proxies of narcoactivity: drug seizures and events from media reports. The fifth chapter explores the spatial signature and pattern of informal urban development. It uses a typology of urban informality identified in chapter two to hypothesize and demonstrate distinct urban expansion patterns from satellite imagery. The sixth and final chapter summarizes the role of illicit and clandestine activity in shaping deforestation and urban expansion through illegal economies, electoral politics, and other informal transactions. Measures of illicit and clandestine activity should--and could--be incorporated into land change models to account for a wider range of relevant causes. This dissertation shines a new light on the previously hidden processes behind ever-easier to detect land-use patterns as earth observing satellites increase spatial and temporal resolution.
ContributorsTellman, Elizabeth (Author) / Turner II, Billie L (Thesis advisor) / Eakin, Hallie (Thesis advisor) / Janssen, Marco (Committee member) / Alba, Felipe de (Committee member) / Jain, Meha (Committee member) / Arizona State University (Publisher)
Created2019
157451-Thumbnail Image.png
Description
Asphalt concrete is a non-homogenous viscoelastic material; its behavior depends on the properties of the asphalt binder and the aggregate skeleton. The two major distresses in flexible pavements, fatigue cracking and rutting, have different mechanisms in that the way binders and mixtures behavior are related differ. Further complicating the issues

Asphalt concrete is a non-homogenous viscoelastic material; its behavior depends on the properties of the asphalt binder and the aggregate skeleton. The two major distresses in flexible pavements, fatigue cracking and rutting, have different mechanisms in that the way binders and mixtures behavior are related differ. Further complicating the issues is that distresses in asphalt pavement are dependent on climate, pavement structure, and traffic loads, in addition to factors such as properties of the asphalt mixture itself. Hence, to characterize the multiscale mechanics associated with binder to mixture behaviors, researchers characterized the fatigue and rutting resistance of asphalt binders and mixtures in the laboratory, and established specifications related to how asphalt mixtures would perform in the field.

This dissertation tackles the linkages across length scales with respect to rutting and cracking. Through the literature reviewed, studies regarding the linear and non-linear viscoelastic properties of asphalt mixture and the corresponding bitumen were identified. There was a wealth of data in this area. In addition, the relationship between the laboratory mixture short-term aging and the binder aging conditions were studied, characterized and analyzed.

The literature review showed that there exists a shortage of knowledge that directly examines the relationships between the binder nonlinear viscoelastic damage behaviors and mixture performance. Addressing this knowledge gap is the basic objective of this research. Specifically, the relationships between the non-recoverable creep compliance at 3.2 kPa (Jnr3.2) and the percent of elastic recovery (R3.2) from the multiple stress creep and recovery (MSCR) test and mixture rutting; and between mixture fatigue and binder linear amplitude sweep (LAS) were studied.

Finally, an aging study was performed to ensure that the binder tests properties reflect the condition of the binder during the mixture test when evaluating binder-to-mixture properties. The propensity to oxidize measured by calculating the aging ratio of various aged conditions (RTFO, PAV, and STOA) were gathered and analyzed.
ContributorsSalim, Ramadan A (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Mike (Committee member) / Arizona State University (Publisher)
Created2019
154627-Thumbnail Image.png
Description

Pavement management systems and performance prediction modeling tools are essential for maintaining an efficient and cost effective roadway network. One indicator of pavement performance is the International Roughness Index (IRI), which is a measure of ride quality and also impacts road safety. Many transportation agencies use IRI to allocate annual

Pavement management systems and performance prediction modeling tools are essential for maintaining an efficient and cost effective roadway network. One indicator of pavement performance is the International Roughness Index (IRI), which is a measure of ride quality and also impacts road safety. Many transportation agencies use IRI to allocate annual maintenance and rehabilitation strategies to their road network.

The objective of the work in this study was to develop a methodology to evaluate and predict pavement roughness over the pavement service life. Unlike previous studies, a unique aspect of this work was the use of non-linear mathematical function, sigmoidal growth function, to model the IRI data and provide agencies with the information needed for decision making in asset management and funding allocation. The analysis included data from two major databases (case studies): Long Term Pavement Performance (LTPP) and the Minnesota Department of Transportation MnROAD research program. Each case study analyzed periodic IRI measurements, which were used to develop the sigmoidal models.

The analysis aimed to demonstrate several concepts; that the LTPP and MnROAD roughness data could be represented using the sigmoidal growth function, that periodic IRI measurements collected for road sections with similar characteristics could be processed to develop an IRI curve representing the pavement deterioration for this group, and that pavement deterioration using historical IRI data can provide insight on traffic loading, material, and climate effects. The results of the two case studies concluded that in general, pavement sections without drainage systems, narrower lanes, higher traffic, or measured in the outermost lane were observed to have more rapid deterioration trends than their counterparts.

Overall, this study demonstrated that the sigmoidal growth function is a viable option for roughness deterioration modeling. This research not only to demonstrated how historical roughness can be modeled, but also how the same framework could be applied to other measures of pavement performance which deteriorate in a similar manner, including distress severity, present serviceability rating, and friction loss. These sigmoidal models are regarded to provide better understanding of particular pavement network deterioration, which in turn can provide value in asset management and resource allocation planning.

ContributorsBeckley, Michelle Elizabeth (Author) / Kaloush, Kamil (Thesis advisor) / Underwood, Benjamin S (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2016
153985-Thumbnail Image.png
Description
This dissertation research is concerned with the study of two important traffic phenomena; merging and lane-specific traffic behavior. First, this research investigates merging traffic behavior through empirical analysis and evaluation of freeway merge ratios. Merges are important components of freeways and traffic behavior around them have a significant impact in

This dissertation research is concerned with the study of two important traffic phenomena; merging and lane-specific traffic behavior. First, this research investigates merging traffic behavior through empirical analysis and evaluation of freeway merge ratios. Merges are important components of freeways and traffic behavior around them have a significant impact in the evolution and stability of congested traffic. At merges, drivers from conflicting traffic branches take turns to merge into a single stream at a rate referred to as the “merge ratio”. In this research, data from several freeway merges was used to evaluate existing macroscopic merge models and theoretical principles of merging behavior. Findings suggest that current merge ratio estimation methods can be insufficient to represent site-specific merge ratios, due to observed within-site variations and unaccounted effects of downstream merge geometry. To overcome these limitations, merge ratios were formulated based on their site-specific lane flow distribution (LFD), the proportion of flow in each freeway lane, for two types of merge geometries. Results demonstrate that the proposed methods are able to improve merge ratio estimates, reproduce within-site variations of merge ratio, and represent more effectively disproportionate redistribution of merging flow for merges where vehicles compete directly to merge due a downstream lane reduction.

Second, this research investigates lane-specific traffic behavior through empirical analysis and statistical modeling of lane flow distribution. Lane-specific traffic behavior is also an important component in evaluating freeway performance and has a significant impact in the mechanism of queue evolution, particularly around merges, and bottleneck discharge rate. In this research, site-specific linear LFD trends of three-lane congested freeways were investigated and modeled. A large-scale data collection process was implemented to systematically characterize the effects of several traffic and geometric features of freeways in the occurrence of between-site LFD variations. Also, an innovative three-stage modeling framework was used to model LFD behavior using multiple logistic regression to describe between-site LFD variations and Dirichlet regression to model recurrent combinations of linear LFD trends. This novel approach is able to represent both between and within site variations of LFD trends better, while accounting for the unit-sum constraint and distribution assumptions inherent of proportions data. Results revealed that proximity to freeway merges, a site’s level of congestion, and the presence of HOV lanes are significant factors that influence site-specific recurrent LFD behavior.

Findings from this work significantly improve the state-of-the-art knowledge on merging and lane-specific traffic behavior, which can help to improve traffic operations and reduce traffic congestion in freeways.
ContributorsReina, Paulina (Author) / Ahn, Soyoung (Thesis advisor) / Pendyala, Ram (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2015
154129-Thumbnail Image.png
Description
Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface

Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface temperature has a microclimatic effect on the air temperature above it. A major increase in local air temperature is caused by heating of solid surfaces in that locality. A case study was done and correlations have been established to calculate the air temperature above a paved surface. Validation with in-situ pavement surface and air temperatures were made. Experimental measurement for the city of Phoenix shows the difference between the ambient air temperature of the city and the microclimatic air temperature above the pavement is approximately 10 degrees Fahrenheit. One mitigation strategy that has been explored is increasing the albedo of the paved surface. Although it will reduce the pavement surface temperature, leading to a reduction in air temperature close to the surface, the increased pavement albedo will also result in greater reflected solar radiation directed towards the building, thus increasing the building solar load. The first effect will imply a reduction in the building energy consumption, while the second effect will imply an increase in the building energy consumption. Simulation is done using the EnergyPlus tool, to find the microclimatic effect of pavement on the building energy performance. The results indicate the cooling energy savings of an office building for different types of pavements can be variable as much as 30%.
ContributorsSengupta, Shawli (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2015