Matching Items (240)
149709-Thumbnail Image.png
Description
The price based marketplace has dominated the construction industry. The majority of owners use price based practices of management (expectation and decision making, control, direction, and inspection.) The price based/management and control paradigm has not worked. Clients have now been moving toward the best value environment (hire

The price based marketplace has dominated the construction industry. The majority of owners use price based practices of management (expectation and decision making, control, direction, and inspection.) The price based/management and control paradigm has not worked. Clients have now been moving toward the best value environment (hire contractors who know what they are doing, who preplan, and manage and minimize risk and deviation.) Owners are trying to move from client direction and control to hiring an expert and allowing them to do the quality control/risk management. The movement of environments changes the paradigm for the contractors from a reactive to a proactive, from a bureaucratic
on-accountable to an accountable position, from a relationship based
on-measuring to a measuring entity, and to a contractor who manages and minimizes the risk that they do not control. Years of price based practices have caused poor quality and low performance in the construction industry. This research identifies what is a best value contractor or vendor, what factors make up a best value vendor, and the methodology to transform a vendor to a best value vendor. It will use deductive logic, a case study to confirm the logic and the proposed methodology.
ContributorsPauli, Michele (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2011
150022-Thumbnail Image.png
Description
Membrane proteins are very important for all living cells, being involved in respiration, photosynthesis, cellular uptake and signal transduction, amongst other vital functions. However, less than 300 unique membrane protein structures have been determined to date, often due to difficulties associated with the growth of sufficiently large and well-ordered crystals.

Membrane proteins are very important for all living cells, being involved in respiration, photosynthesis, cellular uptake and signal transduction, amongst other vital functions. However, less than 300 unique membrane protein structures have been determined to date, often due to difficulties associated with the growth of sufficiently large and well-ordered crystals. This work has been focused on showing the first proof of concept for using membrane protein nanocrystals and microcrystals for high-resolution structure determination. Upon determining that crystals of the membrane protein Photosystem I, which is the largest and most complex membrane protein crystallized to date, exist with only a hundred unit cells with sizes of less than 200 nm on an edge, work was done to develop a technique that could exploit the growth of the Photosystem I nanocrystals and microcrystals. Femtosecond X-ray protein nanocrystallography was developed for use at the first high-energy X-ray free electron laser, the LCLS at SLAC National Accelerator Laboratory, in which a liquid jet would bring fully hydrated Photosystem I nanocrystals into the interaction region of the pulsed X-ray source. Diffraction patterns were recorded from millions of individual PSI nanocrystals and data from thousands of different, randomly oriented crystallites were integrated using Monte Carlo integration of the peak intensities. The short pulses ( 70 fs) provided by the LCLS allowed the possibility to collect the diffraction data before the onset of radiation damage, exploiting the diffract-before-destroy principle. At the initial experiments at the AMO beamline using 6.9- Å wavelength, Bragg peaks were recorded to 8.5- Å resolution, and an electron-density map was determined that did not show any effects of X-ray-induced radiation damage. Recently, femtosecond X-ray protein nanocrystallography experiments were done at the CXI beamline of the LCLS using 1.3- Å wavelength, and Bragg reflections were recorded to 3- Å resolution; the data are currently being processed. Many additional techniques still need to be developed to explore the femtosecond nanocrystallography technique for experimental phasing and time-resolved X-ray crystallography experiments. The first proof-of-principle results for the femtosecond nanocrystallography technique indicate the incredible potential of the technique to offer a new route to the structure determination of membrane proteins.
ContributorsHunter, Mark (Author) / Fromme, Petra (Thesis advisor) / Wolf, George (Committee member) / Levitus, Marcia (Committee member) / Arizona State University (Publisher)
Created2011
149753-Thumbnail Image.png
Description
Molybdenum (Mo) is a key trace nutrient for biological assimilation of nitrogen, either as nitrogen gas (N2) or nitrate (NO3-). Although Mo is the most abundant metal in seawater (105 nM), its concentration is low (<5 nM) in most freshwaters today, and it was scarce in the ocean before 600

Molybdenum (Mo) is a key trace nutrient for biological assimilation of nitrogen, either as nitrogen gas (N2) or nitrate (NO3-). Although Mo is the most abundant metal in seawater (105 nM), its concentration is low (<5 nM) in most freshwaters today, and it was scarce in the ocean before 600 million years ago. The use of Mo for nitrogen assimilation can be understood in terms of the changing Mo availability through time; for instance, the higher Mo content of eukaryotic vs. prokaryotic nitrate reductase may have stalled proliferation of eukaryotes in low-Mo Proterozoic oceans. Field and laboratory experiments were performed to study Mo requirements for NO3- assimilation and N2 fixation, respectively. Molybdenum-nitrate addition experiments at Castle Lake, California revealed interannual and depth variability in plankton community response, perhaps resulting from differences in species composition and/or ammonium availability. Furthermore, lake sediments were elevated in Mo compared to soils and bedrock in the watershed. Box modeling suggested that the largest source of Mo to the lake was particulate matter from the watershed. Month-long laboratory experiments with heterocystous cyanobacteria (HC) showed that <1 nM Mo led to low N2 fixation rates, while 10 nM Mo was sufficient for optimal rates. At 1500 nM Mo, freshwater HC hyperaccumulated Mo intercellularly, whereas coastal HC did not. These differences in storage capacity were likely due to the presence in freshwater HC of the small molybdate-binding protein, Mop, and its absence in coastal and marine cyanobacterial species. Expression of the mop gene was regulated by Mo availability in the freshwater HC species Nostoc sp. PCC 7120. Under low Mo (<1 nM) conditions, mop gene expression was up-regulated compared to higher Mo (150 and 3000 nM) treatments, but the subunit composition of the Mop protein changed, suggesting that Mop does not bind Mo in the same manner at <1 nM Mo that it can at higher Mo concentrations. These findings support a role for Mop as a Mo storage protein in HC and suggest that freshwater HC control Mo cellular homeostasis at the post-translational level. Mop's widespread distribution in prokaryotes lends support to the theory that it may be an ancient protein inherited from low-Mo Precambrian oceans.
ContributorsGlass, Jennifer (Author) / Anbar, Ariel D (Thesis advisor) / Shock, Everett L (Committee member) / Jones, Anne K (Committee member) / Hartnett, Hilairy E (Committee member) / Elser, James J (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2011
150394-Thumbnail Image.png
Description
Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising

Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising results. Recent successes have focused on highly conserved, mucosally-targeted antigens within HIV-1 such as the membrane proximal external region (MPER) of the envelope protein, gp41. MPER has been shown to play critical roles in the viral mucosal transmission, though this peptide is not immunogenic on its own. Gag is a structural protein configuring the enveloped virus particles, and has been suggested to constitute a target of the cellular immunity potentially controlling the viral load. It was hypothesized that HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (dgp41) could be expressed in plants. Plant-optimized HIV-1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a tobacco mosaic virus-based expression system or a combination of both. Results of biophysical, biochemical and electron microscopy characterization demonstrated that plant cells could support not only the formation of HIV-1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These particles were purified and utilized in mice immunization experiments. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR - a fusion of MPER and the B-subunit of cholera toxin) were administered to BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens could be elicited in mice systemically primed with VLPs and these responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a robust boosting response against Gag and gp41 when boosted with either candidate. Functional assays of these antibodies are in progress to test the antibodies' effectiveness in neutralizing and preventing mucosal transmission of HIV-1. This immunogenicity of plant-based Gag/dgp41 VLPs represents an important milestone on the road towards a broadly-efficacious and inexpensive subunit vaccine against HIV-1.
ContributorsKessans, Sarah (Author) / Mor, Tsafrir S (Thesis advisor) / Matoba, Nobuyuki (Committee member) / Mason, Hugh (Committee member) / Hogue, Brenda (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2011
149885-Thumbnail Image.png
Description
The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive

The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive oxygen species that cause damage to photosynthetic complexes, which subsequently need repair or replacement. To gain insight in the degradation/biogenesis dynamics of the photosystems, the lifetimes of photosynthetic proteins and chlorophyll were determined by a combined stable-isotope (15N) and mass spectrometry method. The lifetimes of PSII and PSI proteins ranged from 1-33 and 30-75 hours, respectively. Interestingly, chlorophyll had longer lifetimes than the chlorophyll-binding proteins in these photosystems. Therefore, photosynthetic proteins turn over and are replaced independently from each other, and chlorophyll is recycled from the damaged chlorophyll-binding proteins. In Synechocystis, there are five small Cab-like proteins (SCPs: ScpA-E) that share chlorophyll a/b-binding motifs with LHC proteins in plants. SCPs appear to transiently bind chlorophyll and to regulate chlorophyll biosynthesis. In this study, the association of ScpB, ScpC, and ScpD with damaged and repaired PSII was demonstrated. Moreover, in a mutant lacking SCPs, most PSII protein lifetimes were unaffected but the lifetime of chlorophyll was decreased, and one of the nascent PSII complexes was missing. SCPs appear to bind PSII chlorophyll while PSII is repaired, and SCPs stabilize nascent PSII complexes. Furthermore, aminolevulinic acid biosynthesis, an early step of chlorophyll biosynthesis, was impaired in the absence of SCPs, so that the amount of chlorophyll in the cells was reduced. Finally, a deletion mutation was introduced into the sll1906 gene, encoding a member of the putative bacteriochlorophyll delivery (BCD) protein family. The Sll1906 sequence contains possible chlorophyll-binding sites, and its homolog in purple bacteria functions in proper assembly of light-harvesting complexes. However, the sll1906 deletion did not affect chlorophyll degradation/biosynthesis and photosystem assembly. Other (parallel) pathways may exist that may fully compensate for the lack of Sll1906. This study has highlighted the dynamics of photosynthetic complexes in their biogenesis and turnover and the coordination between synthesis of chlorophyll and photosynthetic proteins.
ContributorsYao, Cheng I Daniel (Author) / Vermaas, Wim (Thesis advisor) / Fromme, Petra (Committee member) / Roberson, Robert (Committee member) / Webber, Andrew (Committee member) / Arizona State University (Publisher)
Created2011
149926-Thumbnail Image.png
Description
A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes of remote identification. Protein patterns were generated using high performance liquid chromatography (HPLC). Patterns created could identify high-traffic and low-traffic indoor spaces. Samples were collected from the air using air pumps to draw air through a filter paper trapping particulates, including large amounts of shed protein matter. In complimentary research aerosolized biological samples were collected from various ecosystems throughout Ecuador to explore the relationship between environmental setting and aerosolized protein concentrations. In order to further enhance protein separation and produce more detailed patterns for the identification of individual organisms of interest; a novel separation device was constructed and characterized. The separation device incorporates a longitudinal gradient as well as insulating dielectrophoretic features within a single channel. This design allows for the production of stronger local field gradients along a global gradient allowing particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. Thus, different types of particles are simultaneously separated at different points along the channel distance given small variations of properties. The device has shown the ability to separate analytes over a large dynamic range of size, from 20 nm to 1 μm, roughly the size of proteins to the size of cells. In the study of different sized sulfate capped polystyrene particles were shown to be selectively captured as well as concentrating particles from 103 to 106 times. Qualitative capture and manipulation of β-amyloid fibrils were also shown. The results demonstrate the selective focusing ability of the technique; and it may form the foundation for a versatile tool for separating complex mixtures. Combined this work shows promise for future identification of individual organisms from aerosolized protein as well as for applications in biomedical research.
ContributorsStaton, Sarah J. R (Author) / Hayes, Mark A. (Committee member) / Anbar, Ariel D (Committee member) / Shock, Everett (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
149795-Thumbnail Image.png
Description
ATP synthase is a large multimeric protein complex responsible for generating the energy molecule adenosine triphosphate (ATP) in most organisms. The catalysis involves the rotation of a ring of c-subunits, which is driven by the transmembrane electrochemical gradient. This dissertation reports how the eukaryotic c-subunit from spinach chloroplast ATP

ATP synthase is a large multimeric protein complex responsible for generating the energy molecule adenosine triphosphate (ATP) in most organisms. The catalysis involves the rotation of a ring of c-subunits, which is driven by the transmembrane electrochemical gradient. This dissertation reports how the eukaryotic c-subunit from spinach chloroplast ATP synthase has successfully been expressed in Escherichia coli and purified in mg quantities by incorporating a unique combination of methods. Expression was accomplished using a codon optimized gene for the c-subunit, and it was expressed as an attachment to the larger, more soluble, native maltose binding protein (MBP-c1). The fusion protein MBP-c1 was purified on an affinity column, and the c1 subunit was subsequently severed by protease cleavage in the presence of detergent. Final purification of the monomeric c1 subunit was accomplished using reversed phase column chromatography with ethanol as an eluent. Circular dichroism spectroscopy data showed clear evidence that the purified c-subunit is folded with the native alpha-helical secondary structure. Recent experiments appear to indicate that this monomeric recombinant c-subunit forms an oligomeric ring that is similar to its native tetradecameric form when reconstituted in liposomes. The F-type ATP synthase c-subunit stoichiometry is currently known to vary from 8 to 15 subunits among different organisms. This has a direct influence on the metabolic requirements of the corresponding organism because each c-subunit binds and transports one H+ across the membrane as the ring makes a complete rotation. The c-ring rotation drives rotation of the gamma-subunit, which in turn drives the synthesis of 3 ATP for every complete rotation. The availability of a recombinantly produced c-ring will lead to new experiments which can be designed to investigate the possible factors that determine the variable c-ring stoichiometry and structure.
ContributorsLawrence, Robert Michael (Author) / Fromme, Petra (Thesis advisor) / Chen, Julian J.L. (Committee member) / Woodbury, Neal W. (Committee member) / Arizona State University (Publisher)
Created2011
150209-Thumbnail Image.png
Description
Historically, uranium has received intense study of its chemical and isotopic properties for use in the nuclear industry, but has been largely ignored by geoscientists despite properties that make it an intriguing target for geochemists and cosmochemists alike. Uranium was long thought to have an invariant 238U/235U ratio in natural

Historically, uranium has received intense study of its chemical and isotopic properties for use in the nuclear industry, but has been largely ignored by geoscientists despite properties that make it an intriguing target for geochemists and cosmochemists alike. Uranium was long thought to have an invariant 238U/235U ratio in natural samples, making it uninteresting for isotopic work. However, recent advances in mass spectrometry have made it possible to detect slight differences in the 238U/235U ratio, creating many exciting new opportunities for U isotopic research. Using uranium ore samples from diverse depositional settings from around the world, it is shown that the low-temperature redox transition of uranium (U6+ to U4+) causes measurable fractionation of the 238U/235U ratio. Moreover, it is shown experimentally that a coordination change of U can also cause measurable fractionation in the 238U/235U ratio. This improved understanding of the fractionation mechanisms of U allows for the use of the 238U/235U ratio as a paleoredox proxy. The 238U/235U ratios of carbonates deposited spanning the end-Permian extinction horizon provide evidence of pronounced and persistent widespread ocean anoxia at, or immediately preceding, the extinction boundary. Variable 238U/235U ratios correlated with proxies for initial Cm/U in the Solar System's earliest objects demonstrates the existence of 247Cm in the early Solar System. Proof of variable 238U/235U ratios in meteoritic material forces a substantive change in the previously established procedures of Pb-Pb dating, which assumed an invariant 238U/235U ratio. This advancement improves the accuracy of not only the Pb-Pb chronometer that directly utilizes the 238U/235U ratio, but also for short-lived radiometric dating techniques that indirectly use the 238U/235U ratio to calculate ages of Solar System material.
ContributorsBrennecka, Gregory A (Author) / Anbar, Ariel D (Thesis advisor) / Wadhwa, Meenakshi (Thesis advisor) / Herrmann, Achim D (Committee member) / Hervig, Richard (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
150118-Thumbnail Image.png
Description
Conformational changes in biomolecules often take place on longer timescales than are easily accessible with unbiased molecular dynamics simulations, necessitating the use of enhanced sampling techniques, such as adaptive umbrella sampling. In this technique, the conformational free energy is calculated in terms of a designated set of reaction coordinates. At

Conformational changes in biomolecules often take place on longer timescales than are easily accessible with unbiased molecular dynamics simulations, necessitating the use of enhanced sampling techniques, such as adaptive umbrella sampling. In this technique, the conformational free energy is calculated in terms of a designated set of reaction coordinates. At the same time, estimates of this free energy are subtracted from the potential energy in order to remove free energy barriers and cause conformational changes to take place more rapidly. This dissertation presents applications of adaptive umbrella sampling to a variety of biomolecular systems. The first study investigated the effects of glycosylation in GalNAc2-MM1, an analog of glycosylated macrophage activating factor. It was found that glycosylation destabilizes the protein by increasing the solvent exposure of hydrophobic residues. The second study examined the role of bound calcium ions in promoting the isomerization of a cis peptide bond in the collagen-binding domain of Clostridium histolyticum collagenase. This study determined that the bound calcium ions reduced the barrier to the isomerization of this peptide bond as well as stabilizing the cis conformation thermodynamically, and identified some of the reasons for this. The third study represents the application of GAMUS (Gaussian mixture adaptive umbrella sampling) to on the conformational dynamics of the fluorescent dye Cy3 attached to the 5' end of DNA, and made predictions concerning the affinity of Cy3 for different base pairs, which were subsequently verified experimentally. Finally, the adaptive umbrella sampling method is extended to make use of the roll angle between adjacent base pairs as a reaction coordinate in order to examine the bending both of free DNA and of DNA bound to the archaeal protein Sac7d. It is found that when DNA bends significantly, cations from the surrounding solution congregate on the concave side, which increases the flexibility of the DNA by screening the repulsion between phosphate backbones. The flexibility of DNA on short length scales is compared to the worm-like chain model, and the contribution of cooperativity in DNA bending to protein-DNA binding is assessed.
ContributorsSpiriti, Justin Matthew (Author) / van der Vaart, Arjan (Thesis advisor) / Chizmeshya, Andrew (Thesis advisor) / Matyushov, Dmitry (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2011
150133-Thumbnail Image.png
Description
ABSTRACT Facility managers have an important job in today's competitive business world by caring for the backbone of the corporation's capital. Maintaining assets and the support efforts cause facility managers to fight an uphill battle to prove the worth of their organizations. This thesis will discuss the important and flexible

ABSTRACT Facility managers have an important job in today's competitive business world by caring for the backbone of the corporation's capital. Maintaining assets and the support efforts cause facility managers to fight an uphill battle to prove the worth of their organizations. This thesis will discuss the important and flexible use of measurement and leadership reports and the benefits of justifying the work required to maintain or upgrade a facility. The task is streamlined by invoking accountability to subject experts. The facility manager must trust in the ability of his or her work force to get the job done. However, with accountability comes increased risk. Even though accountability may not alleviate total control or cease reactionary actions, facility managers can develop key leadership based reports to reassign accountability and measure subject matter experts while simultaneously reducing reactionary actions leading to increased cost. Identifying and reassigning risk that are not controlled to subject matter experts is imperative for effective facility management leadership and allows facility managers to create an accurate and solid facility management plan, supports the organization's succession plan, and allows the organization to focus on key competencies.
ContributorsTellefsen, Thor (Author) / Sullivan, Kenneth (Thesis advisor) / Kashiwagi, Dean (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2011