Matching Items (36)
152165-Thumbnail Image.png
Description
Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are

Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are observed during residency for judgment of their skills. Although the value of this method of skills assessment cannot be ignored, novel methodologies of objective skills assessment need to be designed, developed, and evaluated that augment the traditional approach. Several sensor-based systems have been developed to measure a user's skill quantitatively, but use of sensors could interfere with skill execution and thus limit the potential for evaluating real-life surgery. However, having a method to judge skills automatically in real-life conditions should be the ultimate goal, since only with such features that a system would be widely adopted. This research proposes a novel video-based approach for observing surgeons' hand and surgical tool movements in minimally invasive surgical training exercises as well as during laparoscopic surgery. Because our system does not require surgeons to wear special sensors, it has the distinct advantage over alternatives of offering skills assessment in both learning and real-life environments. The system automatically detects major skill-measuring features from surgical task videos using a computing system composed of a series of computer vision algorithms and provides on-screen real-time performance feedback for more efficient skill learning. Finally, the machine-learning approach is used to develop an observer-independent composite scoring model through objective and quantitative measurement of surgical skills. To increase effectiveness and usability of the developed system, it is integrated with a cloud-based tool, which automatically assesses surgical videos upload to the cloud.
ContributorsIslam, Gazi (Author) / Li, Baoxin (Thesis advisor) / Liang, Jianming (Thesis advisor) / Dinu, Valentin (Committee member) / Greenes, Robert (Committee member) / Smith, Marshall (Committee member) / Kahol, Kanav (Committee member) / Patel, Vimla L. (Committee member) / Arizona State University (Publisher)
Created2013
149744-Thumbnail Image.png
Description
The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth

The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth surfaces from the polygonal domain has its share of issues and there is an inherent need to address various rendering bottlenecks that could hamper such a move. The game engine needs to choose an appropriate method based on in-game characteristics of the objects; character and animated objects need more sophisticated methods whereas static objects could use simpler techniques. Scaling the polygon count over various hardware platforms becomes an important factor. Much control is needed over the tessellation levels, either imposed by the hardware limitations or by the application, to be able to adaptively render the mesh without significant loss in performance. This thesis explores several methods that would help game engine developers in making correct design choices by optimally balancing the trade-offs while rendering the scene using smooth surfaces. It proposes a novel technique for adaptive tessellation of triangular meshes that vastly improves speed and tessellation count. It develops an approximate method for rendering Loop subdivision surfaces on tessellation enabled hardware. A taxonomy and evaluation of the methods is provided and a unified rendering system that provides automatic level of detail by switching between the methods is proposed.
ContributorsAmresh, Ashish (Author) / Farin, Gerlad (Thesis advisor) / Razdan, Anshuman (Thesis advisor) / Wonka, Peter (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2011
150447-Thumbnail Image.png
Description
Night vision goggles (NVGs) are widely used by helicopter pilots for flight missions at night, but the equipment can present visually confusing images especially in urban areas. A simulation tool with realistic nighttime urban images would help pilots practice and train for flight with NVGs. However, there is a lack

Night vision goggles (NVGs) are widely used by helicopter pilots for flight missions at night, but the equipment can present visually confusing images especially in urban areas. A simulation tool with realistic nighttime urban images would help pilots practice and train for flight with NVGs. However, there is a lack of tools for visualizing urban areas at night. This is mainly due to difficulties in gathering the light system data, placing the light systems at suitable locations, and rendering millions of lights with complex light intensity distributions (LID). Unlike daytime images, a city can have millions of light sources at night, including street lights, illuminated signs, and light shed from building interiors through windows. In this paper, a Procedural Lighting tool (PL), which predicts the positions and properties of street lights, is presented. The PL tool is used to accomplish three aims: (1) to generate vector data layers for geographic information systems (GIS) with statistically estimated information on lighting designs for streets, as well as the locations, orientations, and models for millions of streetlights; (2) to generate geo-referenced raster data to suitable for use as light maps that cover a large scale urban area so that the effect of millions of street light can be accurately rendered at real time, and (3) to extend existing 3D models by generating detailed light-maps that can be used as UV-mapped textures to render the model. An interactive graphical user interface (GUI) for configuring and previewing lights from a Light System Database (LDB) is also presented. The GUI includes physically accurate information about LID and also the lights' spectral power distributions (SPDs) so that a light-map can be generated for use with any sensor if the sensors luminosity function is known. Finally, for areas where more detail is required, a tool has been developed for editing and visualizing light effects over a 3D building from many light sources including area lights and windows. The above components are integrated in the PL tool to produce a night time urban view for not only a large-scale area but also a detail of a city building.
ContributorsChuang, Chia-Yuan (Author) / Femiani, John (Thesis advisor) / Razdan, Anshuman (Committee member) / Amresh, Ashish (Committee member) / Arizona State University (Publisher)
Created2011
151020-Thumbnail Image.png
Description
Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order to cope with this complexity, clinicians tend to develop ad-hoc

Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order to cope with this complexity, clinicians tend to develop ad-hoc adaptations to function in an effective manner. It is these adaptations or "deviations" from expected behaviors that provide insight into the processes that shape the overall behavior of the complex system. The research described in this manuscript examines the cognitive basis of clinicians' adaptive mechanisms and presents a methodology for studying the same. Examining interactions in complex systems is difficult due to the disassociation between the nature of the environment and the tools available to analyze underlying processes. In this work, the use of a mixed methodology framework to study trauma critical care, a complex environment, is presented. The hybrid framework supplements existing methods of data collection (qualitative observations) with quantitative methods (use of electronic tags) to capture activities in the complex system. Quantitative models of activities (using Hidden Markov Modeling) and theoretical models of deviations were developed to support this mixed methodology framework. The quantitative activity models developed were tested with a set of fifteen simulated activities that represent workflow in trauma care. A mean recognition rate of 87.5% was obtained in automatically recognizing activities. Theoretical models, on the other hand, were developed using field observations of 30 trauma cases. The analysis of the classification schema (with substantial inter-rater reliability) and 161 deviations identified shows that expertise and role played by the clinician in the trauma team influences the nature of deviations made (p<0.01). The results shows that while expert clinicians deviate to innovate, deviations of novices often result in errors. Experts' flexibility and adaptiveness allow their deviations to generate innovative ideas, in particular when dynamic adjustments are required in complex situations. The findings suggest that while adherence to protocols and standards is important for novice practitioners to reduce medical errors and ensure patient safety, there is strong need for training novices in coping with complex situations as well.
ContributorsVankipuram, Mithra (Author) / Greenes, Robert A (Thesis advisor) / Patel, Vimla L. (Thesis advisor) / Petitti, Diana B. (Committee member) / Dinu, Valentin (Committee member) / Smith, Marshall L. (Committee member) / Arizona State University (Publisher)
Created2012
151151-Thumbnail Image.png
Description
Technology in the modern day has ensured that learning of skills and behavior may be both widely disseminated and cheaply available. An example of this is the concept of virtual reality (VR) training. Virtual Reality training ensures that learning can be provided often, in a safe simulated setting, and it

Technology in the modern day has ensured that learning of skills and behavior may be both widely disseminated and cheaply available. An example of this is the concept of virtual reality (VR) training. Virtual Reality training ensures that learning can be provided often, in a safe simulated setting, and it may be delivered in a manner that makes it engaging while negating the need to purchase special equipment. This thesis presents a case study in the form of a time critical, team based medical scenario known as Advanced Cardiac Life Support (ACLS). A framework and methodology associated with the design of a VR trainer for ACLS is detailed. In addition, in order to potentially provide an engaging experience, the simulator was designed to incorporate immersive elements and a multimodal interface (haptic, visual, and auditory). A study was conducted to test two primary hypotheses namely: a meaningful transfer of skill is achieved from virtual reality training to real world mock codes and the presence of immersive components in virtual reality leads to an increase in the performance gained. The participant pool consisted of 54 clinicians divided into 9 teams of 6 members each. The teams were categorized into three treatment groups: immersive VR (3 teams), minimally immersive VR (3 teams), and control (3 teams). The study was conducted in 4 phases from a real world mock code pretest to assess baselines to a 30 minute VR training session culminating in a final mock code to assess the performance change from the baseline. The minimally immersive team was treated as control for the immersive components. The teams were graded, in both VR and mock code sessions, using the evaluation metric used in real world mock codes. The study revealed that the immersive VR groups saw greater performance gain from pretest to posttest than the minimally immersive and control groups in case of the VFib/VTach scenario (~20% to ~5%). Also the immersive VR groups had a greater performance gain than the minimally immersive groups from the first to the final session of VFib/VTach (29% to -13%) and PEA (27% to 15%).
ContributorsVankipuram, Akshay (Author) / Li, Baoxin (Thesis advisor) / Burleson, Winslow (Committee member) / Kahol, Kanav (Committee member) / Arizona State University (Publisher)
Created2012
156121-Thumbnail Image.png
Description
The technological revolution has caused the entire world to migrate to a digital environment and health care is no exception to this. Electronic Health Records (EHR) or Electronic Medical Records (EMR) are the digital repository for health data of patients. Nation wide efforts have been made by the federal government

The technological revolution has caused the entire world to migrate to a digital environment and health care is no exception to this. Electronic Health Records (EHR) or Electronic Medical Records (EMR) are the digital repository for health data of patients. Nation wide efforts have been made by the federal government to promote the usage of EHRs as they have been found to improve quality of health service. Although EHR systems have been implemented almost everywhere, active use of EHR applications have not replaced paper documentation. Rather, they are often used to store transcribed data from paper documentation after each clinical procedure. This process is found to be prone to errors such as data omission, incomplete data documentation and is also time consuming. This research aims to help improve adoption of real-time EHRs usage while documenting data by improving the usability of an iPad based EHR application that is used during resuscitation process in the intensive care unit. Using Cognitive theories and HCI frameworks, this research identified areas of improvement and customizations in the application that were required to exclusively match the work flow of the resuscitation team at the Mayo Clinic. In addition to this, a Handwriting Recognition Engine (HRE) was integrated into the application to support a stylus based information input into EHR, which resembles our target users’ traditional pen and paper based documentation process. The EHR application was updated and then evaluated with end users at the Mayo clinic. The users found the application to be efficient, usable and they showed preference in using this application over the paper-based documentation.
ContributorsSubbiah, Naveen Kumar (Author) / Patel, Vimla L. (Thesis advisor) / Hsiao, Sharon (Thesis advisor) / Sen, Ayan (Committee member) / Atkinson, Robert K (Committee member) / Arizona State University (Publisher)
Created2018
156859-Thumbnail Image.png
Description
The analysis of clinical workflow offers many challenges to clinical stakeholders and researchers, especially in environments characterized by dynamic and concurrent processes. Workflow analysis in such environments is essential for monitoring performance and finding bottlenecks and sources of error. Clinical workflow analysis has been enhanced with the inclusion of modern

The analysis of clinical workflow offers many challenges to clinical stakeholders and researchers, especially in environments characterized by dynamic and concurrent processes. Workflow analysis in such environments is essential for monitoring performance and finding bottlenecks and sources of error. Clinical workflow analysis has been enhanced with the inclusion of modern technologies. One such intervention is automated location tracking which is a system that detects the movement of clinicians and equipment. Utilizing the data produced from automated location tracking technologies can lead to the development of novel workflow analytics that can be used to complement more traditional approaches such as ethnography and grounded-theory based qualitative methods. The goals of this research are to: (i) develop a series of analytic techniques to derive deeper workflow-related insight in an emergency department setting, (ii) overlay data from disparate sources (quantitative and qualitative) to develop strategies that facilitate workflow redesign, and (iii) incorporate visual analytics methods to improve the targeted visual feedback received by providers based on the findings. The overarching purpose is to create a framework to demonstrate the utility of automated location tracking data used in conjunction with clinical data like EHR logs and its vital role in the future of clinical workflow analysis/analytics. This document is categorized based on two primary aims of the research. The first aim deals with the use of automated location tracking data to develop a novel methodological/exploratory framework for clinical workflow. The second aim is to overlay the quantitative data generated from the previous aim on data from qualitative observation and shadowing studies (mixed methods) to develop a deeper view of clinical workflow that can be used to facilitate workflow redesign. The final sections of the document speculate on the direction of this work where the potential of this research in the creation of fully integrated clinical environments i.e. environments with state-of-the-art location tracking and other data collection mechanisms, is discussed. The main purpose of this research is to demonstrate ways by which clinical processes can be continuously monitored allowing for proactive adaptations in the face of technological and process changes to minimize any negative impact on the quality of patient care and provider satisfaction.
ContributorsVankipuram, Akshay (Author) / Patel, Vimla L. (Thesis advisor) / Wang, Dongwen (Thesis advisor) / Shortliffe, Edward H (Committee member) / Kaufman, David R. (Committee member) / Traub, Stephen J (Committee member) / Arizona State University (Publisher)
Created2018
Description
Distant is a Game Design Document describing an original game by the same name. The game was designed around the principle of core aesthetics, where the user experience is defined first and then the game is built from that experience. Distant is an action-exploration game set on a huge megastructure

Distant is a Game Design Document describing an original game by the same name. The game was designed around the principle of core aesthetics, where the user experience is defined first and then the game is built from that experience. Distant is an action-exploration game set on a huge megastructure floating in the atmosphere of Saturn. Players take on the role of HUE, an artificial intelligence trapped in the body of a maintenance robot, as he explores this strange world and uncovers its secrets. Using acrobatic movement abilities, players will solve puzzles, evade enemies, and explore the world from top to bottom. The world, known as the Strobilus Megastructure, is conical in shape, with living quarters and environmental system in the upper sections and factories and resource mining in the lower sections. The game world is split up into 10 major areas and countless minor and connecting areas. Special movement abilities like wall running and anti-gravity allow players to progress further down in the world. These abilities also allow players to solve more complicated puzzles, and to find more difficult to reach items. The story revolves around six artificial intelligences that were created to maintain the station. Many centuries ago, these AI helped humankind maintain their day-to-day lives and helped researchers working on new scientific breakthroughs. This led to the discovery of faster-than-light travel, and humanity left the station and our solar system to explore the cosmos. HUE, the AI in charge of human relations, fell into depression and shut down. Awakening several hundred years in the future, HUE sets out to find the other AI. Along the way he helps them reconnect and discovers the history and secrets of the station. Distant is intended for players looking for three things: A fantastic world full of discovery, a rich, character driven narrative, and challenging acrobatic gameplay. Players of any age or background are recommended to give it a try, but it will require investment and a willingness to improve. Distant is intended to change players, to force them to confront difficulty and different perspectives. Most games involve upgrading a character; Distant is a game that upgrades the player.
ContributorsGarttmeier, Colin Reiser (Author) / Collins, Daniel (Thesis director) / Amresh, Ashish (Committee member) / School of Arts, Media and Engineering (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135212-Thumbnail Image.png
Description
The purpose of the Oculus Exercise research project we conducted was to find a way to entice individuals to attend a gym more often and for longer periods of time. We have found that many activities are being augmented by the increasingly popular virtual reality technology, and within that space

The purpose of the Oculus Exercise research project we conducted was to find a way to entice individuals to attend a gym more often and for longer periods of time. We have found that many activities are being augmented by the increasingly popular virtual reality technology, and within that space "gamifying" the activity seems to attract more users. Given the idea of making activities more entertaining to users through "gamification", we decided to incorporate virtual reality, using the Oculus Rift, to immerse users within a simulated environment to potentially drive the factors previously identified in respect to gym utilization. To start, we surveyed potential users to gauge potential interest in virtual reality and its usage in physical exercise. Based on the initial responses, we saw that there was a definite interest in "gamifying" physical exercises using virtual reality, and proceeded to design a prototype using Unreal Engine 4 -- which is an engine for creating high quality video games with support for virtual reality -- to experiment how it would affect a standard workout routine. After considering several options, we decided to move forward with designing our prototype to augment a spin machine with virtual reality due to its common usage within a gym, and the consistent cardiovascular exercise it entails, as well as the safety intrinsic to it being a mostly stationary device. By analyzing the results of a survey after experimenting upon a user test group, we can begin to correlate the benefits and the drawbacks of using virtual reality in physical exercise, and the feasibility of doing so.
ContributorsCarney, Nicholas (Co-author) / West, Andrew (Co-author) / Dobkins, Jacob (Co-author) / Amresh, Ashish (Thesis director) / Gray, Robert (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
134322-Thumbnail Image.png
Description
Young adults do not know basic emergency preparedness skills. Although there are materials out there such as printed and online materials form Center for Disease Control, it is unlikely that college-age people will take the time to read them. Some individuals have addressed the issue of young adults not wanting

Young adults do not know basic emergency preparedness skills. Although there are materials out there such as printed and online materials form Center for Disease Control, it is unlikely that college-age people will take the time to read them. Some individuals have addressed the issue of young adults not wanting to read materials by creating a fun interactive game in the San Francisco area, but since the game must be played in person, a solution like that can only reach so far. Studies suggest that virtual worlds are effective in teaching people new skills, so I have created a virtual world that will teach people basic emergency preparedness skills in a way that is memorable and appealing to a college-age audience. The logic used to teach players the concepts of emergency preparedness is case-based reasoning. Case-based reasoning is the process of solving new problems by remembering similar solutions in the past. By creating a simulation emergency situation in a virtual world, young adults are more likely to know what to do in the case of an actual emergency.
ContributorsTeplik, Julie Rachel (Author) / Craig, Scotty (Thesis director) / Amresh, Ashish (Committee member) / WPC Graduate Programs (Contributor) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05