Matching Items (214)
148332-Thumbnail Image.png
Description

The reionization of the Universe is thought to have completed by redshift z~5.5. To probe this era, galaxy observations in the Subaru Deep Field (SDF) have identified more than 100 galaxies at z~6, many spectroscopically confirmed through follow-up observations. Using available optical/IR data, we model with CIGALE the spectral energy

The reionization of the Universe is thought to have completed by redshift z~5.5. To probe this era, galaxy observations in the Subaru Deep Field (SDF) have identified more than 100 galaxies at z~6, many spectroscopically confirmed through follow-up observations. Using available optical/IR data, we model with CIGALE the spectral energy distributions (SEDs) of 43 SDF galaxies, including newly acquired data from the UKIRT WFCAM K-band for seven previously studied objects. In particular, modeling deep IR photometry is sensitive to the galaxy's Lyman continuum (LyC) escape fraction (fesc). We find the median implied fesc value as ~0.4+/-0.1 (mean error). Significant uncertainties in data and fitting result in a large range of fesc for individual objects, but analysis suggests that fesc is likely high enough for galaxies to finish reionization by z~6. More importantly, we find trends between the CIGALE UV slope b, fesc, and dust extinction E(B-V): for a given E(B-V), b appear steeper by ~0.4 than at z=0. Lower fesc values appear to be associated with bluer b and lower E(B-V), but only weakly. This suggests that LyC could have escaped through holes with sufficiently wide opening angles surrounding the ISM from outflows of supernovae and/or weak AGN to escape, but resulting in a large range of implied fesc values depending on the orientation of each galaxy. The current HST, Spitzer and ground-based photometric and model errors for the 43 galaxies are large, so IR spectroscopic observations with the James Webb Space Telescope are needed to better constrain this possibility.

ContributorsJeon, Junehyoung (Author) / Windhorst, Rogier (Thesis director) / Cohen, Seth (Committee member) / Jansen, Rolf (Committee member) / Department of Physics (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148341-Thumbnail Image.png
Description

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the behavior of electrons whose combined internal angular momentum is zero. This paper will go over Dr. Bell's famous inequality, which shows why the process of entanglement cannot be explained by traditional means of local processes. Entanglement will be viewed initially through the Copenhagen Interpretation, but this paper will also look at two particular models of quantum mechanics, de-Broglie Bohm theory and Everett's Many-Worlds Interpretation, and observe how they explain the behavior of spin and entangled particles compared to the Copenhagen Interpretation.

ContributorsWood, Keaten Lawrence (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
There is no doubt that inductive logic and inductive arguments are vital to the formation of scientific theories. This thesis questions the use of inductive inferences within the sciences. Specifically, it will examine various perspectives on David Hume's famed "problem of induction". Hume proposes that inductive inferences cannot be logically

There is no doubt that inductive logic and inductive arguments are vital to the formation of scientific theories. This thesis questions the use of inductive inferences within the sciences. Specifically, it will examine various perspectives on David Hume's famed "problem of induction". Hume proposes that inductive inferences cannot be logically justified. Here we will explore several assessments of Hume's ideas and inductive logic in general. We will examine the views of philosophers and logicians: Karl Popper, Nelson Goodman, Larry Laudan, and Wesley Salmon. By comparing the radically different views of these philosophers it is possible to gain insight into the complex nature of making inductive inferences. First, Popper agrees with Hume that inductive inferences can never be logically justified. He maintains that the only way around the problem of induction is to rid science of inductive logic altogether. Goodman, on the other hand, believes induction can be justified in much the same way as deduction is justified. Goodman sets up a logical schema in which the rules of induction justify the particular inductive inferences. These general rules are then in turn justified by correct inferences. In this way, Goodman sets up an explication of inductive logic. Laudan and Salmon go on to provide more specific details about how the particular rules of induction should be constructed. Though both Laudan and Salmon are completing the logic schema of Goodman, their approaches are quite different. Laudan takes a more qualitative approach while Salmon uses the quantitative rules of probability to explicate induction. In the end, it can be concluded that it seems quite possible to justify inductive inferences, though there may be more than one possible set of rules of induction.
ContributorsFeddern, James William Edward (Author) / Creath, Richard (Thesis director) / Armendt, Brad (Committee member) / Department of Physics (Contributor) / Department of Military Science (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Since the acceptance of Einstein's special theory of relativity by the scientific community, authors of science fiction have used the concept of time dilation to permit seemingly impossible feats. Simple spacecraft acceleration schemes involving time dilation have been considered by scientists and fiction writers alike. Using an original Java program

Since the acceptance of Einstein's special theory of relativity by the scientific community, authors of science fiction have used the concept of time dilation to permit seemingly impossible feats. Simple spacecraft acceleration schemes involving time dilation have been considered by scientists and fiction writers alike. Using an original Java program based upon the differential equations for special relativistic kinematics, several scenarios for round trip excursions at relativistic speeds are calculated and compared, with particular attention to energy budget and relativistic time passage in all relevant frames.
ContributorsAlfson, Jonathan William (Author) / Jacob, Richard (Thesis director) / Covatto, Carl (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
130387-Thumbnail Image.png
Description

X-ray free electron lasers are used in measuring diffraction patterns from nanocrystals in the 'diffract-before-destroy' mode by outrunning radiation damage. The finite-sized nanocrystals provide an opportunity to recover intensity between Bragg spots by removing the modulating function that depends on crystal shape, i.e. the transform of the crystal shape. This

X-ray free electron lasers are used in measuring diffraction patterns from nanocrystals in the 'diffract-before-destroy' mode by outrunning radiation damage. The finite-sized nanocrystals provide an opportunity to recover intensity between Bragg spots by removing the modulating function that depends on crystal shape, i.e. the transform of the crystal shape. This shape-transform dividing-out scheme for solving the phase problem has been tested using simulated examples with cubic crystals. It provides a phasing method which does not require atomic resolution data, chemical modification to the sample, or modelling based on the protein databases. It is common to find multiple structural units (e.g. molecules, in symmetry-related positions) within a single unit cell, therefore incomplete unit cells (e.g. one additional molecule) can be observed at surface layers of crystals. In this work, the effects of such incomplete unit cells on the 'dividing-out' phasing algorithm are investigated using 2D crystals within the projection approximation. It is found that the incomplete unit cells do not hinder the recovery of the scattering pattern from a single unit cell (after dividing out the shape transforms from data merged from many nanocrystals of different sizes), assuming that certain unit-cell types are preferred. The results also suggest that the dynamic range of the data is a critical issue to be resolved in order to apply the shape transform method practically.

ContributorsLiu, Haiguang (Author) / Zatsepin, Nadia (Author) / Spence, John (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2014-01-01
130319-Thumbnail Image.png
Description

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.

ContributorsOberthuer, Dominik (Author) / Knoska, Juraj (Author) / Wiedorn, Max O. (Author) / Beyerlein, Kenneth R. (Author) / Bushnell, David A. (Author) / Kovaleva, Elena G. (Author) / Heymann, Michael (Author) / Gumprecht, Lars (Author) / Kirian, Richard (Author) / Barty, Anton (Author) / Mariani, Valerio (Author) / Tolstikova, Aleksandra (Author) / Adriano, Luigi (Author) / Awel, Salah (Author) / Barthelmess, Miriam (Author) / Dorner, Katerina (Author) / Xavier, P. Lourdu (Author) / Yefanov, Oleksandr (Author) / James, Daniel (Author) / Nelson, Garrett (Author) / Wang, Dingjie (Author) / Calvey, George (Author) / Chen, Yujie (Author) / Schmidt, Andrea (Author) / Szczepek, Michael (Author) / Frielingsdorf, Stefan (Author) / Lenz, Oliver (Author) / Snell, Edward (Author) / Robinson, Philip J. (Author) / Sarler, Bozidar (Author) / Belsak, Grega (Author) / Macek, Marjan (Author) / Wilde, Fabian (Author) / Aquila, Andrew (Author) / Boutet, Sebastien (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Scheerer, Patrick (Author) / Lipscomb, John D. (Author) / Weierstall, Uwe (Author) / Kornberg, Roger D. (Author) / Spence, John (Author) / Pollack, Lois (Author) / Chapman, Henry N. (Author) / Bajt, Sasa (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2017-03-16
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11
130322-Thumbnail Image.png
Description

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

ContributorsMunke, Anna (Author) / Andreasson, Jakob (Author) / Aquila, Andrew (Author) / Awel, Salah (Author) / Ayyer, Kartik (Author) / Barty, Anton (Author) / Bean, Richard J. (Author) / Berntsen, Peter (Author) / Bielecki, Johan (Author) / Boutet, Sebastien (Author) / Bucher, Maximilian (Author) / Chapman, Henry N. (Author) / Daurer, Benedikt J. (Author) / DeMirci, Hasan (Author) / Elser, Veit (Author) / Fromme, Petra (Author) / Hajdu, Janos (Author) / Hantke, Max F. (Author) / Higashiura, Akifumi (Author) / Hogue, Brenda (Author) / Hosseinizadeh, Ahmad (Author) / Kim, Yoonhee (Author) / Kirian, Richard (Author) / Reddy, Hemanth K. N. (Author) / Lan, Ti-Yen (Author) / Larsson, Daniel S. D. (Author) / Liu, Haiguang (Author) / Loh, N. Duane (Author) / Maia, Filipe R. N. C. (Author) / Mancuso, Adrian P. (Author) / Muhlig, Kerstin (Author) / Nakagawa, Atsushi (Author) / Nam, Daewoong (Author) / Nelson, Garrett (Author) / Nettelblad, Carl (Author) / Okamoto, Kenta (Author) / Ourmazd, Abbas (Author) / Rose, Max (Author) / van der Schot, Gijs (Author) / Schwander, Peter (Author) / Seibert, M. Marvin (Author) / Sellberg, Jonas A. (Author) / Sierra, Raymond G. (Author) / Song, Changyong (Author) / Svenda, Martin (Author) / Timneanu, Nicusor (Author) / Vartanyants, Ivan A. (Author) / Westphal, Daniel (Author) / Wiedom, Max O. (Author) / Williams, Garth J. (Author) / Xavier, Paulraj Lourdu (Author) / Soon, Chun Hong (Author) / Zook, James (Author) / College of Liberal Arts and Sciences (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Life Sciences (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Department of Physics (Contributor)
Created2016-08-01
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05
130310-Thumbnail Image.png
Description
The 1958 Nobel prize to Beadle and Tatum for proposing that each gene is responsible for a distinct enzyme is now seen as both foundational to molecular biology and genetics, albeit oversimplified. Some genes, for example, code for functional RNAs, while others code for non-enzymatic proteins such as collagen. Yet

The 1958 Nobel prize to Beadle and Tatum for proposing that each gene is responsible for a distinct enzyme is now seen as both foundational to molecular biology and genetics, albeit oversimplified. Some genes, for example, code for functional RNAs, while others code for non-enzymatic proteins such as collagen. Yet enzymes remain fundamental to life on earth, catalyzing at least 5000 biochemical reactions (so far identified). Enzymes can increase reaction rates by huge factors, from millions of years to milliseconds per event, so that, from meat tenderizer to washing powder, to muscle contraction, cargo transport in the cell, ion pumps, infection and digestion, no molecular machine is more fundamental to biological function than the enzyme.
ContributorsSpence, John (Author) / Lattman, Eaton (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2016-07