Matching Items (29)
Filtering by

Clear all filters

168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
171488-Thumbnail Image.png
Description
ABSTRACT Over the past several decades, the dilemma of free-roaming horses in the U.S. has proven to be one of the most divisive issues in management of public lands. According to federal land management agencies, without population regulation, horses can increase at the rate of 15-20% a year on arid

ABSTRACT Over the past several decades, the dilemma of free-roaming horses in the U.S. has proven to be one of the most divisive issues in management of public lands. According to federal land management agencies, without population regulation, horses can increase at the rate of 15-20% a year on arid rangelands with inadequate numbers of natural, large predators. Horses compete for valuable forage and water resources alongside cattle and native wildlife in delicate riparian areas highly susceptible to the negative ecological effects of soil compaction and overgrazing. Most U.S. management policies, therefore, call for increased removal of free-roaming horses as they are categorized as “un-authorized livestock” or "non-native" species. Wild horse advocates, however, continue to petition for improvement in animal welfare and expansion of the horses’ territory. With heightened social conflict spurred by animal rights and ecological concerns, not to mention the often-stark differences over what really “belongs” on the landscape, the success of appropriate management strategies hinges on managing agencies’ preparedness and ability to respond in a timely and inclusive manner. A critical element of the management context is the public’s views toward the wild horse and the science used to manage them. Synthesizing the vast literature in the history and philosophy of wildlife management in the American West, and utilizing an ethnographic and case study approach, my research examines the range of stakeholder concerns and analyzes the factors that have led to the disconnect between public values of wild horses and public policy for the management of the federally protected free-roaming horses in Arizona’s Apache-Sitgreaves National Forests.
ContributorsMurphree, Julie Joan (Author) / Minteer, Ben A. (Thesis advisor) / Schoon, Michael (Thesis advisor) / Bradshaw, Karen (Committee member) / Chew, Matthew (Committee member) / Arizona State University (Publisher)
Created2022
171906-Thumbnail Image.png
Description
Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges.

Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges. Vulnerability assessment (VA) examines the potential consequences a system is likely to experience due to exposure to perturbation or stressors and lack of the capacity to adapt. Post-fire debris flow and heat represent particularly challenging problems for infrastructure and users in the arid U.S. West. Post-fire debris flow, which is manifested with heat and drought, produces powerful runoff threatening physical transportation infrastructures. And heat waves have devastating health effects on transportation infrastructure users, including increased mortality rates. VA anticipates the potential consequences of these perturbations and enables infrastructure stakeholders to improve the system's resilience. The current transportation climate VA—which only considers a single direct climate stressor on the infrastructure—falls short of addressing the wildfire and heat challenges. This work proposes advanced transportation climate VA methods to address the complex and multiple climate stressors and the vulnerability of infrastructure users. Two specific regions were chosen to carry out the progressive transportation climate VA: 1) the California transportation networks’ vulnerability to post-fire debris flows, and 2) the transportation infrastructure user’s vulnerability to heat exposure in Phoenix.
ContributorsLi, Rui (Author) / Chester, Mikhail V. (Thesis advisor) / Middel, Ariane (Committee member) / Hondula, David M. (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2022
190880-Thumbnail Image.png
Description
Communications around sustainability have been found to be incongruent with eliciting the transformative change required to address global climate change and its' repercussions. Recent research has been exploring storytelling in sustainability, specifically with an emphasis on reflexive and emancipatory methods. These methods encourage embracing and contextualizing complexity and intend to

Communications around sustainability have been found to be incongruent with eliciting the transformative change required to address global climate change and its' repercussions. Recent research has been exploring storytelling in sustainability, specifically with an emphasis on reflexive and emancipatory methods. These methods encourage embracing and contextualizing complexity and intend to target entire cognitive hierarchies. This study explores the possibility of using emancipatory and reflexive storytelling as a tool to change attitudes pertaining to the Valley Metro Light Rail, an example of a complex sustainability mitigation effort. I explore this in four steps: 1) Conducted a pre-survey to gauge preexisting attitudes and predispositions; 2) Provided a narrative that uses storytelling methodologies of reflexivity and emancipation through a story about the light rail; 3) Conducted a post-survey to gauge attitude shift resulting from the narrative intervention; 4) Facilitated a focus group discussion to examine impact qualitatively. These steps intended to provide an answer to the question: How does emancipatory and reflexive storytelling impact affective, cognitive and conative attitudes regarding local alternative transportation? By using tripartite attitude model, qualitative and quantitative analysis this paper determines that reflexive and emancipatory storytelling impacts attitudinal structures. The impact is marginal in the survey response, though the shift indicated a narrowing of participant responses towards one another, indicative of participants subscribing to emancipation and reflexivity of their held attitudes. From the group discussion, it was evident from qualitative responses that participants engaged in emancipating themselves from their held attitudes and reflected upon them. In doing so they engaged in collaboration to make suggestions and suggest actions to help those with experiences that differed from their own. Though this research doesn’t provide conclusive evidence, it opens the door for future research to assess these methodologies as a tool to elicit shared values, beliefs and norms, which are necessary for collective action leading to transformative change in response to global climate change.
ContributorsSwanson, Jake Ryan (Author) / Roseland, Mark (Thesis advisor) / Larson, Kelli (Committee member) / Calhoun, Craig (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2023
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
189405-Thumbnail Image.png
Description
Understanding the dynamic interactions between humans and wildlife is essential to establishing sustainable wildlife-based ecotourism (WBE). Animal behavior exists within a complex feedback loop that affects overall ecosystem function, tourist satisfaction, and socioeconomics of local communities. However, the specific value that animal behavior plays in provisioning ecosystem services has not

Understanding the dynamic interactions between humans and wildlife is essential to establishing sustainable wildlife-based ecotourism (WBE). Animal behavior exists within a complex feedback loop that affects overall ecosystem function, tourist satisfaction, and socioeconomics of local communities. However, the specific value that animal behavior plays in provisioning ecosystem services has not been thoroughly evaluated. People enjoy activities that facilitate intimate contact with animals, and there are many perceived benefits associated with these experiences, such as encouraging pro-environmental attitudes that can lead to greater motivation for conservation. There is extensive research on the effects that unregulated tourism activity can have on wildlife behavior, which include implications for population health and survival. Prior to COVID-19, WBE was developing rapidly on a global scale, and the pause in activity caused by the pandemic gave natural systems the chance to recover from environmental damage from over-tourism and provided insights into how tourism could be less impactful in the future. Until now it has been undetermined how changes in animal behavior can alter the relationships and socioeconomics of this multidimensional system. This dissertation provides a thorough exploration of the behavioral, ecological, and economic parameters required to model biosocial interactions and feedbacks within the whale watching system in Las Perlas Archipelago, Panama. Through observational data collected in the field, this project assessed how unmanaged whale watching activity is affecting the behavior of Humpback whales in the area as well as the socioeconomic and conservation contributions of the industry. Additionally, it is necessary to consider what a sustainable form of wildlife tourism might be, and whether the incorporation of technology will help enhance visitor experience while reducing negative impacts on wildlife. To better ascertain whether this concept of this integration would be favorably viewed, a sample of individuals was surveyed about their experiences about using technology to enhance their interactions with nature. This research highlights the need for more deliberate identification and incorporation of the perceptions of all stakeholders (wildlife included) to develop a less-impactful WBE industry that provides people with opportunities to establish meaningful relationships with nature that motivate them to help meet the conservation challenges of today.
ContributorsSurrey, Katie (Author) / Gerber, Leah (Thesis advisor) / Guzman, Hector (Committee member) / Minteer, Ben (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2023
171648-Thumbnail Image.png
Description
University-level sustainability education in Western academia attempts to focus on eliminating future harm to people and the planet. However, Western academia as an institution upholds systems of oppression and reproduces settler colonialism. This reproduction is antithetical to sustainability goals as it continues patterns of Indigenous erasure and extractive relationships to

University-level sustainability education in Western academia attempts to focus on eliminating future harm to people and the planet. However, Western academia as an institution upholds systems of oppression and reproduces settler colonialism. This reproduction is antithetical to sustainability goals as it continues patterns of Indigenous erasure and extractive relationships to the Land that perpetuate violence towards people and the planet. Sustainability programs, however, offer several frameworks, including resilience, that facilitate critical interrogations of social-ecological systems. In this thesis, I apply the notion of resilience to the perpetuation of settler colonialism within university-level sustainability education. Specifically, I ask: How is settler colonialism resilient in university-level sustainability education? How are, or could, sustainability programs in Western academic settings address settler colonialism? Through a series of conversational interviews with faculty and leadership from Arizona State University School of Sustainability, I analyzed how university-level sustainability education is both challenging and shaped by settler colonialism. These interviews focused on faculty perspectives on the topic and related issues; the interviews were analyzed using thematic coding in NVivo software. The results of this project highlight that many faculty members are already concerned with and focused on challenging settler colonialism, but that settler colonialism remains resilient in this system due to feedback loops at the personal level and reinforcing mechanisms at the institutional level. This research analyzes these feedback loops and reinforcing mechanisms, among others, and supports the call for anti-colonial and decolonial reconstruction of curriculum, as well as a focus on relationship building, shifting of mindset, and school-wide education on topics of white supremacy, settler colonialism, and systems of oppression in general.
ContributorsBills, Haven (Author) / Klinsky, Sonja (Thesis advisor) / Goebel, Janna (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2022
161987-Thumbnail Image.png
Description
Machine learning (ML) and deep learning (DL) has become an intrinsic part of multiple fields. The ability to solve complex problems makes machine learning a panacea. In the last few years, there has been an explosion of data generation, which has greatly improvised machine learning models. But this comes with

Machine learning (ML) and deep learning (DL) has become an intrinsic part of multiple fields. The ability to solve complex problems makes machine learning a panacea. In the last few years, there has been an explosion of data generation, which has greatly improvised machine learning models. But this comes with a cost of high computation, which invariably increases power usage and cost of the hardware. In this thesis we explore applications of ML techniques, applied to two completely different fields - arts, media and theater and urban climate research using low-cost and low-powered edge devices. The multi-modal chatbot uses different machine learning techniques: natural language processing (NLP) and computer vision (CV) to understand inputs of the user and accordingly perform in the play and interact with the audience. This system is also equipped with other interactive hardware setups like movable LED systems, together they provide an experiential theatrical play tailored to each user. I will discuss how I used edge devices to achieve this AI system which has created a new genre in theatrical play. I will then discuss MaRTiny, which is an AI-based bio-meteorological system that calculates mean radiant temperature (MRT), which is an important parameter for urban climate research. It is also equipped with a vision system that performs different machine learning tasks like pedestrian and shade detection. The entire system costs around $200 which can potentially replace the existing setup worth $20,000. I will further discuss how I overcame the inaccuracies in MRT value caused by the system, using machine learning methods. These projects although belonging to two very different fields, are implemented using edge devices and use similar ML techniques. In this thesis I will detail out different techniques that are shared between these two projects and how they can be used in several other applications using edge devices.
ContributorsKulkarni, Karthik Kashinath (Author) / Jayasuriya, Suren (Thesis advisor) / Middel, Ariane (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2021
191008-Thumbnail Image.png
Description
Heavy metals and persistent organic pollutants contribute to human health risks worldwide. Among the most common routes of exposure to pollutants for humans are through the consumption of contaminated water and food, with fish being among the greatest vectors for ingestion of heavy metals in humans, particularly mercury.This dissertation consists

Heavy metals and persistent organic pollutants contribute to human health risks worldwide. Among the most common routes of exposure to pollutants for humans are through the consumption of contaminated water and food, with fish being among the greatest vectors for ingestion of heavy metals in humans, particularly mercury.This dissertation consists of three chapters with a central theme of investigating heavy metal and persistent organic pollutant concentrations in fish and corned beef, which are two commonly consumed food items in American Samoa. A literature review illustrated that historically the primary pollutants of concern in fish muscle tissue from American Samoa have been mercury, arsenic, and polycyclic aromatic hydrocarbon mixtures. To better understand the changes in heavy metals and persistent organic pollutants in fish, this study reports an updated data set, comparing concentrations in pollutants as they have changed over time. To further investigate pollutants in fish tissue, 77 locally caught and commonly consumed fish were analyzed for heavy metals and persistent organic pollutants, and baseline human health risk assessments were calculated for contaminants that had available oral reference doses. While in American Samoa collecting fish for contaminant analyses, it was realized that canned corned beef appeared to be more commonly consumed than fresh fish. An IRB approved consumption survey revealed that 89% of American Samoan adults regularly consume fish, which is the same percentage of people that reported eating canned corned beef, indicating a dramatic increase in this food item to their diet since its introduction in the 20th century. Results of this study indicate that fish muscle tissue generally has higher heavy metal concentrations than canned corned beef, and that mercury continues to be a main contaminant of concern when consuming fresh and canned fish in American Samoa. While none of the heavy metal concentrations in corned beef exceeded calculated action levels, these foods might contribute to negative health outcomes in other ways. One of the main findings of this study is that either the presence or the ability to detect persistent organic pollutant concentrations are increasing in fish tissue and should be periodically monitored to adequately reflect current conditions.
ContributorsLewis, Tiffany Beth (Author) / Polidoro, Beth (Thesis advisor) / Neuer, Susanne (Thesis advisor) / Halden, Rolf (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2023
187639-Thumbnail Image.png
Description
Cities globally are experiencing substantial warming due to ongoing urbanization and climate change. However, existing efforts to mitigate urban heat focus mainly on new technologies, exacerbate social injustices, and ignore the need for a sustainability lens that considers environmental, social, and economic perspectives. Heat in urban areas is amplified and

Cities globally are experiencing substantial warming due to ongoing urbanization and climate change. However, existing efforts to mitigate urban heat focus mainly on new technologies, exacerbate social injustices, and ignore the need for a sustainability lens that considers environmental, social, and economic perspectives. Heat in urban areas is amplified and urgently needs to be considered as a critical sustainability issue that crosses disciplinary and sectoral (traditional) boundaries. The missing urgency is concerning because urban overheating is a multi-faceted threat to the well-being and performance of individuals as well as the energy efficiency and economy of cities. Urban heat consequences require transformation in ways of thinking by involving the best available knowledge engaging scientists, policymakers, and communities. To do so, effective heat mitigation planning requires a considerable amount of diverse knowledge sources, yet urban planners face multiple barriers to effective heat mitigation, including a lack of usable, policy-relevant science and governance structures. To address these issues, transdisciplinary approaches, such as co-production via partnerships and the creation of usable, policy-relevant science, are necessary to allow for sustainable and equitable heat mitigation that allow cities to work toward multiple Sustainable Development Goals (SDGs) using a systems approach. This dissertation presents three studies that contribute to a sustainability lens on urban heat, improve the holistic and multi-perspective understanding of heat mitigation strategies, provide contextual guidance for reflective pavement as a heat mitigation strategy, and evaluate a multilateral, sustainability-oriented, co-production partnership to foster heat resilience equitably in cities. Results show that science and city practice communicate differently about heat mitigation strategies while both avoid to communicate disservices and trade-offs. Additionally, performance evaluation of heat mitigation strategies for decision-making needs to consider multiple heat metrics, people, and background climate. Lastly, the partnership between science, city practice, and community needs to be evaluated to be accountable and provide a pathway of growth for all partners. The outcomes of this dissertation advance research and awareness of urban heat for science, practice, and community, and provide guidance to improve holistic and sustainable decision-making in cities and partnerships to address SDGs around urban heat.
ContributorsSchneider, Florian Arwed (Author) / Middel, Ariane (Thesis advisor) / Vanos, Jennifer K (Committee member) / Withycombe Keeler, Lauren (Committee member) / Arizona State University (Publisher)
Created2023