Matching Items (133)
Filtering by

Clear all filters

150052-Thumbnail Image.png
Description
The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships.

The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships. The first step towards understanding the effects of spatial heterogeneity on the BEF relationships is to quantify spatial heterogeneity characteristics of key variables of biodiversity and ecosystem functioning, and identify the spatial relationships among these variables. The goal of our research was to address the following research questions based on data collected in 2005 (corresponding to the year when the initial site background information was conducted) and in 2008 (corresponding to the year when removal treatments were conducted) from the Inner Mongolia Grassland Removal Experiment (IMGRE) located in northern China: 1) What are the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass in a natural grassland community of Inner Mongolia, China? How are they related spatially? and 2) How do removal treatments affect the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass? Is there any change for their spatial correlations after removal treatments? Our results showed that variables of biodiversity and ecosystem functioning in the natural grassland community would present different spatial patterns, and they would be spatially correlated to each other closely. Removal treatments had a significant effect on spatial structures and spatial correlations of variables, compared to those prior to the removal treatments. The differences in spatial pattern of plant and soil variables and their correlations before and after the biodiversity manipulation may not imply that the results from BEF experiments like IMGRE are invalid. However, they do suggest that the possible effects of spatial heterogeneity on the BEF relationships should be critically evaluated in future studies.
ContributorsYuan, Fei (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew T. (Committee member) / Rowe, Helen I (Committee member) / Arizona State University (Publisher)
Created2011
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
151938-Thumbnail Image.png
Description

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient loading and climate to drive watershed nutrient yields? I conducted research in two study systems with contrasting spatial and temporal scales. Using a combination of data-mining and modeling approaches, I reconstructed nitrogen and phosphorus budgets for the northeastern US over the 20th century, including anthropogenic nutrient inputs and riverine fluxes, for ~200 watersheds at 5 year time intervals. Infrastructure systems, such as sewers, wastewater treatment plants, and reservoirs, strongly affected the spatial and temporal patterns of nutrient fluxes from northeastern watersheds. At a smaller scale, I investigated the effects of urban stormwater drainage infrastructure on water and nutrient delivery from urban watersheds in Phoenix, AZ. Using a combination of field monitoring and statistical modeling, I tested hypotheses about the importance of hydrologic and biogeochemical control of nutrient delivery. My research suggests that hydrology is the major driver of differences in nutrient fluxes from urban watersheds at the event scale, and that consideration of altered hydrologic networks is critical for understanding anthropogenic impacts on biogeochemical cycles. Overall, I found that human activities affect nutrient transport via multiple pathways. Anthropogenic nutrient additions increase the supply of nutrients available for transport, whereas hydrologic infrastructure controls the delivery of nutrients from watersheds. Incorporating the effects of hydrologic infrastructure is critical for understanding anthropogenic effects on biogeochemical fluxes across spatial and temporal scales.

ContributorsHale, Rebecca Leslie (Author) / Grimm, Nancy (Thesis advisor) / Childers, Daniel (Committee member) / Vivoni, Enrique (Committee member) / York, Abigail (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2013
141460-Thumbnail Image.png
Description

China’s South–North Water Transfer Project (SNWTP) has the potential to transfer as much as 44.8 km3 year-1 of water from the Yangtze River basin to the Yellow River basin. However, the SNWTP has not been assessed from a sustainability perspective. Thus, in this study we evaluated the SNWTP’s economic, social,

China’s South–North Water Transfer Project (SNWTP) has the potential to transfer as much as 44.8 km3 year-1 of water from the Yangtze River basin to the Yellow River basin. However, the SNWTP has not been assessed from a sustainability perspective. Thus, in this study we evaluated the SNWTP’s economic, social, and environmental impacts by reviewing the English literature published in journals that are part of the Web of Science database. We then synthesized this literature using a Triple Bottom Line framework of sustainability assessment. Our study has led to three main findings: (1) whether the SNWTP is economically beneficial depends largely on model assumptions, meaning that economic gains at the regional and national level are uncertain; (2) the SNWTP requires the resettlement of hundreds of thousands of people and challenges existing water management institutions, suggesting possible social concerns beyond the short term; and (3) evidently large environmental costs in water-providing areas and uncertain environmental benefits in water-receiving areas together point to an uncertain environmental future for the geographic regions involved. Thus, the overall sustainability of SNWTP is seriously questionable. Although much work has been done studying individual aspects of SNWTP’s sustainability, few studies have utilized the multi-scale, transdisciplinary approaches that such a project demands. To minimize environmental risks, ensure social equity, and sustain economic benefits, we suggest that the project be continuously monitored in all three dimensions, and that integrated sustainability assessments and policy improvements be carried out periodically.

ContributorsWilson, Maxwell (Author) / Li, Xiao-Yan (Author) / Ma, Yu-Jun (Author) / Smith, Andrew (Author) / Wu, Jianguo (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-22
149470-Thumbnail Image.png
Description
The highly-social plateau pika (Lagomorpha: Ochotona curzoniae) excavates vast burrow complexes in alpine meadows on the Tibetan Plateau. Colonies of over 300 individuals/ha have been reported. As an ecosystem engineer, their burrowing may positively impact ecosystem health by increasing plant species diversity, enhancing soil mixing, and boosting water infiltration. However,

The highly-social plateau pika (Lagomorpha: Ochotona curzoniae) excavates vast burrow complexes in alpine meadows on the Tibetan Plateau. Colonies of over 300 individuals/ha have been reported. As an ecosystem engineer, their burrowing may positively impact ecosystem health by increasing plant species diversity, enhancing soil mixing, and boosting water infiltration. However, pikas are commonly regarded as pests, and are heavily poisoned throughout their range. The underlying assumption of eradication programs is that eliminating pikas will improve rangeland quality and decrease soil erosion. This dissertation explores the link between plateau pikas and the alpine meadow ecosystem in Qinghai Province, PRC. This research uses both comparative field studies and theoretical modeling to clarify the role of pika disturbance. Specifically, these studies quantify the impact of pikas on nutrient cycling (via nutrient concentrations of vegetation and soil), hydrology (via water infiltration), local landscape properties (via spatial pattern description), and vascular plant communities (via species richness and composition). The competitive relationship between livestock and pikas is examined with a mathematical model. Results of this research indicate that pika colonies have both local and community level effects on water infiltration and plant species richness. A major contribution of pika disturbance is increased spatial heterogeneity, which likely underlies differences in the plant community. These findings suggest that the positive impact of plateau pikas on rangeland resources has been undervalued. In concurrence with other studies, this work concludes that plateau pikas provide valuable ecosystem services on the Tibetan Plateau.
ContributorsHogan, Brigitte Wieshofer (Author) / Smith, Andrew T. (Thesis advisor) / Anderies, J. Marty (Committee member) / Briggs, John M. (Committee member) / Stromberg, Juliet C. (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2010
130393-Thumbnail Image.png
Description
Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative

Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as “economic epidemiology” or “epidemiological economics,” the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
Created2015-12-01
130394-Thumbnail Image.png
Description

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of diets that differ in elemental composition, stoichiometric theory can inform predictions about dietary effects on excretion ratios.
We conducted a meta-analysis to test the effects of diet elemental composition on consumption and nutrient excretion by fish. We examined the relationship between consumption rate and diet N : P across all laboratory studies and calculated effect sizes for each excretion metric to test for significant effects.
Consumption rate of N, but not P, was significantly negatively affected by diet N : P. Effect sizes of diet elemental composition on consumption-specific excretion N, P and N : P in laboratory studies were all significantly different from 0, but effect size for raw excretion N : P was not significantly different from zero in laboratory or field surveys.
Our results highlight the importance of having a mechanistic understanding of the drivers of consumer excretion rates and ratios. We suggest that more research is needed on how consumption and assimilation efficiency vary with N : P and in natural ecosystems in order to further understand mechanistic processes in consumer-driven nutrient recycling.

ContributorsMoody, Eric (Author) / Corman, Jessica (Author) / Elser, James (Author) / Sabo, John (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-03-01
130400-Thumbnail Image.png
Description
Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily

Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily rare phenotypes. The latter may result in over-representation of individuals who may participate in resource utilization patterns that can lead to over-exploitation, exhaustion, and, ultimately, collapse of both the resource and the population that depends on it. Here, we aim to identify regimes that can signal whether a consumer–resource system is capable of supporting viable degrees of heterogeneity. The framework used here is an expansion of a previously introduced consumer–resource type system of a population of individuals classified by their resource consumption. Application of the Reduction Theorem to the system enables us to evaluate the health of the system through tracking both the mean value of the parameter of resource (over)consumption, and the population variance, as both change over time. The article concludes with a discussion that highlights applicability of the proposed system to investigation of systems that are affected by particularly devastating overly adapted populations, namely cancerous cells. Potential intervention approaches for system management are discussed in the context of cancer therapies.
Created2015-02-01
130330-Thumbnail Image.png
Description
Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.
Created2016-10-25
130333-Thumbnail Image.png
Description
The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done

The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.
ContributorsYu, Qiang (Author) / Wu, Honghui (Author) / He, Nianpeng (Author) / Lu, Xiaotao (Author) / Wang, Zhiping (Author) / Elser, James (Author) / Wu, Jianguo (Author) / Han, Xingguo (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2012-03-13