Matching Items (156)
Filtering by

Clear all filters

148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152239-Thumbnail Image.png
Description
Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the flow through the entire porous medium should be considered choked as the gas pressure gradient at the point of choking becomes singular. This thesis investigates the choking condition for compressible gas flow in a single microscopic pore. Quasi-one-dimensional analysis and axisymmetric numerical simulations of compressible gas flow in a pore scale varicose tube with a number of bumps are carried out, and the local Mach number and pressure along the tube are computed for the flow near choking condition. The effects of tube length, inlet-to-outlet pressure ratio, the number of bumps and the amplitude of the bumps on the choking condition are obtained. These critical values provide guidance for avoiding the choking condition in practice.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Wang, Liping (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151291-Thumbnail Image.png
Description
The contemporary architectural pedagogy is far removed from its ancestry: the classical Beaux-Arts and polytechnic schools of the 19th century and the Bauhaus and Vkhutemas models of the modern period. Today, the "digital" has invaded the academy and shapes pedagogical practices, epistemologies, and ontologies within it, and this invasion is

The contemporary architectural pedagogy is far removed from its ancestry: the classical Beaux-Arts and polytechnic schools of the 19th century and the Bauhaus and Vkhutemas models of the modern period. Today, the "digital" has invaded the academy and shapes pedagogical practices, epistemologies, and ontologies within it, and this invasion is reflected in teaching practices, principles, and tools. Much of this digital integration goes unremarked and may not even be explicitly taught. In this qualitative research project, interviews with 18 leading architecture lecturers, professors, and deans from programs across the United States were conducted. These interviews focused on advanced practices of digital architecture, such as the use of digital tools, and how these practices are viewed. These interviews yielded a wealth of information about the uses (and abuses) of advanced digital technologies within the architectural academy, and the results were analyzed using the methods of phenomenology and grounded theory. Most schools use digital technologies to some extent, although this extent varies greatly. While some schools have abandoned hand-drawing and other hand-based craft almost entirely, others have retained traditional techniques and use digital technologies sparingly. Reasons for using digital design processes include industry pressure as well as the increased ability to solve problems and the speed with which they could be solved. Despite the prevalence of digital design, most programs did not teach related design software explicitly, if at all, instead requiring students (especially graduate students) to learn to use them outside the design studio. Some of the problems with digital design identified in the interviews include social problems such as alienation as well as issues like understanding scale and embodiment of skill.
ContributorsAlqabandy, Hamad (Author) / Brandt, Beverly (Thesis advisor) / Mesch, Claudia (Committee member) / Newton, David (Committee member) / Arizona State University (Publisher)
Created2012
151485-Thumbnail Image.png
Description
Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, power outputs and Reynolds numbers calculated for the turbine for various combinations of working fluids and inlet nozzles. The results indicate the turbine is capable of achieving a turbine efficiency of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These efficiencies are promising considering the numerous losses still present in the current design. Calculation of the Reynolds number provided some capability to determine the flow behavior and how that behavior impacts the performance and efficiency of the Tesla turbine. It was determined that turbulence in the flow is essential to achieving high power outputs and high efficiency. Although the efficiency, after peaking, begins to slightly taper off as the flow becomes increasingly turbulent, the power output maintains a steady linear increase.
ContributorsPeshlakai, Aaron (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2012
150829-Thumbnail Image.png
Description
In the middle of the 20th century, juried annuals of Native American painting in art museums were unique opportunities because of their select focus on two-dimensional art as opposed to "craft" objects and their inclusion of artists from across the United States. Their first fifteen years were critical for patronage

In the middle of the 20th century, juried annuals of Native American painting in art museums were unique opportunities because of their select focus on two-dimensional art as opposed to "craft" objects and their inclusion of artists from across the United States. Their first fifteen years were critical for patronage and widespread acceptance of modern easel painting. Held at the Philbrook Art Center in Tulsa (1946-1979), the Denver Art Museum (1951-1954), and the Museum of New Mexico Art Gallery in Santa Fe (1956-1965), they were significant not only for the accolades and prestige they garnered for award winners, but also for setting standards of quality and style at the time. During the early years of the annuals, the art was changing, some moving away from conventional forms derived from the early art training of the 1920s and 30s in the Southwest and Oklahoma, and incorporating modern themes and styles acquired through expanded opportunities for travel and education. The competitions reinforced and reflected a variety of attitudes about contemporary art which ranged from preserving the authenticity of the traditional style to encouraging experimentation. Ultimately becoming sites of conflict, the museums that hosted annuals contested the directions in which artists were working. Exhibition catalogs, archived documents, and newspaper and magazine articles about the annuals provide details on the exhibits and the changes that occurred over time. The museums' guidelines and motivations, and the statistics on the award winners reveal attitudes toward the art. The institutions' reactions in the face of controversy and their adjustments to the annuals' guidelines impart the compromises each made as they adapted to new trends that occurred in Native American painting over a fifteen year period. This thesis compares the approaches of three museums to their juried annuals and establishes the existence of a variety of attitudes on contemporary Native American painting from 1946-1960. Through this collection of institutional views, the competitions maintained a patronage base for traditional style painting while providing opportunities for experimentation, paving the way for the great variety and artistic progress of Native American painting today.
ContributorsPeters, Stephanie (Author) / Duncan, Kate (Thesis advisor) / Fahlman, Betsy (Thesis advisor) / Mesch, Claudia (Committee member) / Arizona State University (Publisher)
Created2012
148412-Thumbnail Image.png
Description

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal homeostasis behavior using the two developments. Using the measurement platform, it was shown that there was no thermal homeostatic behavior demonstrated by the sample at steady state temperatures. Theoretical calculations show other ways to demonstrate the cooling homeostasis behavior through time-varying heat inputs. Factors within the system such as heat loss and thermal mass contributed to an inhibited sample performance in the platform. Future work will have to be conducted, not only to verify the findings of the initial experiments but also to improve the measurement platform and the theoretical model.

ContributorsBoman, Neal D (Author) / Wang, Liping (Thesis director) / Taylor, Syndey (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148418-Thumbnail Image.png
Description

A thermochromic mid-infrared filter is designed, where a spectrally-selective transmittance peak exists while vanadium dioxide layers are below their transition temperature but broad opaqueness is observed below the transition temperature. This filter takes advantage of interference effects between a silicon spacer and insulating vanadium dioxide to create the transmittance peak

A thermochromic mid-infrared filter is designed, where a spectrally-selective transmittance peak exists while vanadium dioxide layers are below their transition temperature but broad opaqueness is observed below the transition temperature. This filter takes advantage of interference effects between a silicon spacer and insulating vanadium dioxide to create the transmittance peak and the drastic optical property change between insulating and metallic vanadium dioxide. The theoretical performance of the filter in energy dissipation and thermal camouflaging applications is analyzed and can be optimized by tuning the thicknesses of the thin-film layers.

ContributorsChao, Jeremy (Author) / Wang, Liping (Thesis director) / Taylor, Sydney (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136153-Thumbnail Image.png
Description
Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and

Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and the length of usability of gesture-driven devices, defined low-stress and intuitive gestures for users to interact with gesture recognition systems are necessary to consider. To measure stress, a Galvanic Skin Response instrument was used as a primary indicator, which provided evidence of the relationship between stress and intuitive gestures, as well as user preferences towards certain tasks and gestures during performance. Fifteen participants engaged in creating and performing their own gestures for specified tasks that would be required during the use of free-space gesture-driven devices. The tasks include "activation of the display," scroll, page, selection, undo, and "return to main menu." They were also asked to repeat their gestures for around ten seconds each, which would give them time and further insight of how their gestures would be appropriate or not for them and any given task. Surveys were given at different time to the users: one after they had defined their gestures and another after they had repeated their gestures. In the surveys, they ranked their gestures based on comfort, intuition, and the ease of communication. Out of those user-ranked gestures, health-efficient gestures, given that the participants' rankings were based on comfort and intuition, were chosen in regards to the highest ranked gestures.
ContributorsLam, Christine (Author) / Walker, Erin (Thesis director) / Danielescu, Andreea (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor) / School of Arts, Media and Engineering (Contributor) / Department of English (Contributor) / Computing and Informatics Program (Contributor)
Created2015-05
135609-Thumbnail Image.png
Description
Zeolitic Imidazolate Frameworks (ZIFs) are a promising technology for the separation of gases. ZIFs represent a type of hybrid material that is a subset of metal organic frameworks while displaying zeolite properties. ZIFs have tunable pore metrics, high thermal stability, and large surface areas giving them advantages over traditional zeolites.

Zeolitic Imidazolate Frameworks (ZIFs) are a promising technology for the separation of gases. ZIFs represent a type of hybrid material that is a subset of metal organic frameworks while displaying zeolite properties. ZIFs have tunable pore metrics, high thermal stability, and large surface areas giving them advantages over traditional zeolites. The experiment sought to determine the flux of hexane vapor through ZIF-68 with Fourier Transform Infrared Spectroscopy (FTIR) mapping. FTIR mapping was used to obtain three spectra per crystal and the concentration gradient was analyzed to determine the flux. ZIF-68 was completely stable when loaded with hexane and exposed to the atmosphere. There was no hexane diffusion out of the crystal. As a result, ZIF-68 was heated to 50°C to increase diffusion and calculate the flux. ZIF-68 adhered to Knudsen Diffusion, and the flux was calculated to be 2.00*10-5 kg mol/s*m2. The small flux occurred because almost no concentration gradient was obtained through the crystal. It was hypothesized that the resistance in the crystal was substantially lower than the resistance at the boundary layer, which would have caused a small concentration gradient. Using film mass transfer theory, the resistance inside the crystal was found to be 1200 times lower than the resistance at the boundary layer confirming the hypothesis.
ContributorsSigrist, Dallas Dale (Author) / Lin, Jerry (Thesis director) / Wang, Liping (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137817-Thumbnail Image.png
Description
G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs

G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs that currently provide healthcare facilities in developing countries. The market size for healthcare aid in developing countries is estimated to be $1.7 billion. The plan also analyses the customer's value chain and buying cycle by using voice of the customer data. The strategic position analysis profiles G3Box's competition and discusses the company's differential advantage versus other options for healthcare facilities in developing countries. Next the document discusses G3Box's market strategy and implementation, along with outlining a value proposition for the company. G3Box has two objectives for 2013: 1) Increase sales revenue to $1.3 million and 2) increase market presence to 25%. In order to reach these objectives, G3Box has developed a primary and secondary strategic focus for each objective. The primary strategies are relationship selling and online marketing. The secondary strategies are developing additional value-added activities and public relations.
ContributorsWalters, John (Author) / Denning, Michael (Thesis director) / Ostrom, Lonnie (Committee member) / Carroll, James (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12