Matching Items (63)
134565-Thumbnail Image.png
Description
A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation is modeled by numerically solving the Taylor-Goldstein equation, which governs

A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation is modeled by numerically solving the Taylor-Goldstein equation, which governs the dynamics of internal waves in stably stratified shear flows. The waves are forced by a flow over a bell shaped mountain placed at the lower boundary of the domain. A perfectly radiating condition based on the group velocity of mountain waves is imposed at the top to avoid artificial wave reflection. A validation for the numerical method through comparisons with the corresponding analytical solutions will be provided. Then, the method is applied to more realistic profiles of the stability to study the impact of these profiles on wave propagation through the tropopause.
Created2017-05
135150-Thumbnail Image.png
Description
In Apis mellifera, gustatory responsiveness to sucrose is a good indicator of learning ability \u2014 in that individuals with high sucrose responsiveness will typically form faster, longer-lasting associations with conditioned stimulus than individuals with a low sucrose responsiveness. The purpose of this study was to determine whether experience with olfactory

In Apis mellifera, gustatory responsiveness to sucrose is a good indicator of learning ability \u2014 in that individuals with high sucrose responsiveness will typically form faster, longer-lasting associations with conditioned stimulus than individuals with a low sucrose responsiveness. The purpose of this study was to determine whether experience with olfactory conditioning had lasting effects on gustatory responsiveness. Groups were placed in an environment that would facilitate association of an odor to a sucrose reward, tested for retention, then tested for gustatory responsiveness. Control groups underwent the same testing schedule, but were not exposed to odor in the first environment. There was no significant difference in gustatory responsiveness between the two groups. Mann-Whitney tests were used to analyze the results, and though the mean GRS score was lower among the treatment group there was no significant trend, possibly due to small sample sizes.
ContributorsSeemann, J. H. (Author) / Amdam, Gro (Thesis director) / Smith, Brian (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
135152-Thumbnail Image.png
Description
Genetic counseling is a medical field that was established in the 1970s, but whose demand is now growing exponentially due to modern genetic technology. We now have the ability to look into the human genetic code, detect the genotype of individuals, and use this knowledge to our benefit. However, Genetic

Genetic counseling is a medical field that was established in the 1970s, but whose demand is now growing exponentially due to modern genetic technology. We now have the ability to look into the human genetic code, detect the genotype of individuals, and use this knowledge to our benefit. However, Genetic testing results in a need for new ethical boundaries to be drawn. The idea of the "best possible conditions" of conceiving a child and whether this child has a right to not know are the two major ethical issues that will be focused on in order to analyze the ethical boundary that needs to be drawn for genetic counseling. In order to analyze these ethical issues, a focus group of Arizona State University students was organized. After producing results for the focus group, there are no true conclusions that can be drawn that applied to all of society. The focus group sample size was too small to produce a broad range of results and the participants were all Arizona State University Undergraduate students. However, it did become apparent that knowledge on these ethical issues is crucial in order to ensure they do not hinder the field of genetic counseling. It is predicted that in order to have the best outcome for the field of genetic counseling, genetic counselors themselves need to draw the ethical boundaries for the issues studied.
ContributorsBarker, Samantha (Author) / Amdam, Gro (Thesis director) / Bang, Christofer (Committee member) / Wang, Ying (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
Description
The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study

The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study aims to assess the current state of research and identify trends that may guide future investigations. Following the guidelines established by PRISMA, a total sample of 26 research papers were extracted from the electronic databases, PubMed and Scopus. These papers were categorized based on their publication dates, and research questions were formulated regarding three main topics: venom type, cancer-targeting mechanism, and cancer type. Statistical analysis of the research questions was performed using 2x2 contingency tables for a chi-square test. The results of the analysis reveal a statistically significant increase in publications focused on cell death mechanisms and breast cancer in recent years. This increase in publications reflects a growing interest in the potential for venom to induce apoptosis in cancer cells and target the unique biological properties of breast cancer. Overall, this meta-analysis offers insight into the evolving sphere of venom-based cancer research, providing a glimpse into the potential trajectory of this field.
ContributorsHolder, Marina (Author) / Amdam, Gro (Thesis director) / Mana, Miyeko (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2023-12
189213-Thumbnail Image.png
Description
This work presents a thorough analysis of reconstruction of global wave fields (governed by the inhomogeneous wave equation and the Maxwell vector wave equation) from sensor time series data of the wave field. Three major problems are considered. First, an analysis of circumstances under which wave fields can be fully

This work presents a thorough analysis of reconstruction of global wave fields (governed by the inhomogeneous wave equation and the Maxwell vector wave equation) from sensor time series data of the wave field. Three major problems are considered. First, an analysis of circumstances under which wave fields can be fully reconstructed from a network of fixed-location sensors is presented. It is proven that, in many cases, wave fields can be fully reconstructed from a single sensor, but that such reconstructions can be sensitive to small perturbations in sensor placement. Generally, multiple sensors are necessary. The next problem considered is how to obtain a global approximation of an electromagnetic wave field in the presence of an amplifying noisy current density from sensor time series data. This type of noise, described in terms of a cylindrical Wiener process, creates a nonequilibrium system, derived from Maxwell’s equations, where variance increases with time. In this noisy system, longer observation times do not generally provide more accurate estimates of the field coefficients. The mean squared error of the estimates can be decomposed into a sum of the squared bias and the variance. As the observation time $\tau$ increases, the bias decreases as $\mathcal{O}(1/\tau)$ but the variance increases as $\mathcal{O}(\tau)$. The contrasting time scales imply the existence of an ``optimal'' observing time (the bias-variance tradeoff). An iterative algorithm is developed to construct global approximations of the electric field using the optimal observing times. Lastly, the effect of sensor acceleration is considered. When the sensor location is fixed, measurements of wave fields composed of plane waves are almost periodic and so can be written in terms of a standard Fourier basis. When the sensor is accelerating, the resulting time series is no longer almost periodic. This phenomenon is related to the Doppler effect, where a time transformation must be performed to obtain the frequency and amplitude information from the time series data. To obtain frequency and amplitude information from accelerating sensor time series data in a general inhomogeneous medium, a randomized algorithm is presented. The algorithm is analyzed and example wave fields are reconstructed.
ContributorsBarclay, Bryce Matthew (Author) / Mahalov, Alex (Thesis advisor) / Kostelich, Eric J (Thesis advisor) / Moustaoui, Mohamed (Committee member) / Motsch, Sebastien (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2023
Description

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate physiology, behavior, and gene expression in the female worker caste. The pheromone acts as a signal of queen presence that suppresses worker reproduction. In the absence of reproduction, young workers focus on taking care of the queen and larvae, known as nurse tasks, while older workers forage. In nurse bees, QMP has fundamental physiological impacts, including increasing abdominal lipid stores and increasing the protein content of hypopharyngeal glands (HPG). The HPG are worker-specific glands that can synthesize royal jelly used in colony nourishment. In workers, larger HPG signifies the ability to secrete royal jelly, while shrunken glands are characteristic of foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the underlying mechanism is unclear: Does the pheromone simply make workers consume more pollen which provides lipids and protein, or does QMP also increase lipogenesis? In this study, I measured abdominal lipogenesis as fatty acid synthase (FAS) activity and monitored abdominal protein content and HPG size in caged, nurse-aged worker bees. In cages, workers were exposed to QMP or not, and they were provided with a lipid less diet in a full factorial design experiment. I found that QMP did not influence abdominal FAS activity or protein, but significantly increased HPG size. The data also revealed a significant positive correlation between abdominal protein and HPG size. My results do not support the idea that QMP modulates lipogenesis in worker bees, but my data can be interpreted to reflect that QMP mobilizes abdominal protein for the production of jelly in the HPG. This finding is in line with a previous study revealing a role of honey bee Brood Pheromone in mobilization of a major protein used in jelly production. Overall, my results support a fundamental role of QMP in worker metabolic processes associated with colony nourishment.

ContributorsOreshkova, Angela (Author) / Amdam, Gro (Thesis director) / Scofield, Sebastian (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

Climate is a critical determinant of agricultural productivity, and the ability to accurately predict this productivity is necessary to provide guidance regarding food security and agricultural management. Previous predictions vary in approach due to the myriad of factors influencing agricultural productivity but generally suggest long-term declines in productivity and agricultural

Climate is a critical determinant of agricultural productivity, and the ability to accurately predict this productivity is necessary to provide guidance regarding food security and agricultural management. Previous predictions vary in approach due to the myriad of factors influencing agricultural productivity but generally suggest long-term declines in productivity and agricultural land suitability under climate change. In this paper, I relate predicted climate changes to yield for three major United States crops, namely corn, soybeans, and wheat, using a moderate emissions scenario. By adopting data-driven machine learning approaches, I used the following machine learning methods: random forest (RF), extreme gradient boosting (XGB), and artificial neural networks (ANN) to perform comparative analysis and ensemble methodology. I omitted the western US due to the region's susceptibility to water stress and the prevalence of artificial irrigation as a means to compensate for dry conditions. By considering only climate, the model's results suggest an ensemble mean decline in crop yield of 23.4\% for corn, 19.1\% for soybeans, and 7.8\% for wheat between the years of 2017 and 2100. These results emphasize potential negative impacts of climate change on the current agricultural industry as a result of shifting bio-climactic conditions.

ContributorsSwarup, Shray (Author) / Eikenberry, Steffen (Thesis director) / Mahalov, Alex (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022.

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022. The patterns of publications on specific topics over time can tell us what is perceived as a current major cause by physicians, public leaders, researchers, and the public. A deeper dive into systemic inequality as a cause of maternal morbidity and mortality highlights it as a major contributor to these high rates, but that progress is slowly being made through the implementation of detection and prevention tactics, as well as accessible prenatal programs and care.

ContributorsRettig, Lelia (Author) / Amdam, Gro (Thesis director) / Bang, Christofer (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2023-05