Matching Items (113)
Filtering by

Clear all filters

168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
171598-Thumbnail Image.png
Description
Electroactive bacteria connect biology to electricity, acting as livingelectrochemical catalysts. In nature, these bacteria can respire insoluble compounds like iron oxides, and in the laboratory, they are able to respire an electrode and produce an electrical current. This document investigates two of these electroactive bacteria: Geobacter sulfurreducens and Thermincola ferriacetica.

Electroactive bacteria connect biology to electricity, acting as livingelectrochemical catalysts. In nature, these bacteria can respire insoluble compounds like iron oxides, and in the laboratory, they are able to respire an electrode and produce an electrical current. This document investigates two of these electroactive bacteria: Geobacter sulfurreducens and Thermincola ferriacetica. G. sulfurreducens is a Gramnegative iron-reducing soil bacterium, and T. ferriacetica is a thermophilic, Grampositive bacterium that can reduce iron minerals and several other electron acceptors. Respiring insoluble electron acceptors like metal oxides presents challenges to a bacterium. The organism must extend its electron transport chain from the inner membrane outside the cell and across a significant distance to the surface of the electron acceptor. G. sulfurreducens is one of the most-studied electroactive bacteria, and despite this there are many gaps in knowledge about its mechanisms for transporting electrons extracellularly. Research in this area is complicated by the presence of multiple pathways that may be concurrently expressed. I used cyclic voltammetry to determine which pathways are present in electroactive biofilms of G. sulfurreducens grown under different conditions and correlated this information with gene expression data from the same conditions. This correlation presented several genes that may be components of specific pathways not just at the inner membrane but along the entire respiratory pathway, and I propose an updated model of the pathways in this organism. I also characterized the composition of G. sulfurreducens and found that it has high iron and lipid content independent of growth condition, and the high iron content is explained by the large abundance of multiheme cytochrome expression that I observed. I used multiple microscopy techniques to examine extracellular respiration in G. sulfurreducens, and in the process discovered a novel organelle: the intracytoplasmic membrane. I show 3D reconstructions of the organelle in G. sulfurreducens and discuss its implications for the cell’s metabolism. Finally, I discuss gene expression in T. ferriacetica in RNA samples collected from an anode-respiring culture and highlight the most abundantly expressed genes related to anode-respiring metabolism.
ContributorsHowley, Ethan Thomas (Author) / Torres, César I (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Nannenga, Brent (Committee member) / Arizona State University (Publisher)
Created2022
171568-Thumbnail Image.png
Description
The microorganisms that colonize the gastrointestinal tract have been recognized over the last several decades to have a significant bearing on the health trajectories of the hosts that harbor them. The collection of these gut microbes display links with acute and chronic disease, garnering substantial interest in leveraging the microbiome

The microorganisms that colonize the gastrointestinal tract have been recognized over the last several decades to have a significant bearing on the health trajectories of the hosts that harbor them. The collection of these gut microbes display links with acute and chronic disease, garnering substantial interest in leveraging the microbiome for improved health states. How these microbes assemble as a complex community and interact with each other, and the host depends on a multitude of factors. In adulthood, diet is one of the main moderators, having a significant influence on community composition and the functional output captured in the metabolites produced and/or modified by the gut microbiome. Thus, the assembly of microbes in the gut are tightly intertwined with health. In this dissertation, I examine the impact of diet and feeding behaviors on the gut microbiome and what features may be grounding or responsive under such pressures. Specifically, I first explore the avian gut microbiome as a barometer of nutritional and environmental influence on host health. Birds have continually displayed robust physiology under dietary pressures, placing them in an important, though underutilized, position within the translational science framework. Second, I describe the association of food insecurity on gut microbiome and metabolome profiles in a diverse college-based sample. Food insecurity provides its own set of unique pressures, such as unintentional calorie restriction, and inconsistent dietary intake and access to healthy food options. Third, I examine the effect of a one vs. two-consecutive days of intermittent fasting on the gut microbiome, the plasma metabolome, and associated clinical outcomes in overweight and obese adults. Growing in scientific and lay popularity, dietary fasting has been noted to induce changes in the diversity of gut microflora and gut motility, though different fasting lengths have not been assessed in the context of the human microbiome. Overall, this collection of work underscores that the community of microbes in the gut are individualized, resilient, and baseline composition and functioning are germane to how an individual may react to a particular dietary intervention.
ContributorsMohr, Alex (Author) / Sweazea, Karen L. (Thesis advisor) / Johnston, Carol S. (Committee member) / Sears, Dorothy D. (Committee member) / Whisner, Corrie M. (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2022
171577-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the

Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the efficiency of bioremediation in the subsurface. Specifically, I investigated strategies to (i) promote improve microbial reductive dechlorination extent through the addition of Fe0 and (ii) Cr (VI) bio-reduction through enrichment of specialized microbial consortia. Fe0 can enhance microbial TCE reduction by inducing anoxic conditions and generating H2 (electron donor). I first evaluated the effect of Fe0 on microbial reduction of TCE (with ClO4– as co-contaminant) using semi-batch soil microcosms. Results showed that high concentration of Fe0 expected during in situ remediation inhibited microbial TCE and ClO4– reduction when added together with Dehalococcoides mccartyi-containing cultures. A low concentration of aged Fe0 enhanced microbial TCE dechlorination to ethene and supported complete microbial ClO4– reduction. I then evaluated a decoupled Fe0 and biostimulation/bioaugmentation treatment approach using soil packed columns with continuous flow of groundwater. I demonstrated that microbial TCE reductive dechlorination to ethene can be benefitted by Fe0 abiotic reactions, when biostimulation and bioaugmentation are performed downstream of Fe0 addition. Furthermore, I showed that ethene production can be sustained in the presence of aerobic groundwater (after Fe0 exhaustion) by the addition of organic substrates. I hypothesized that some lessons learned from TCE Bioremediation can be applied also for other pollutants that can benefit from anaerobic reductions, like Cr (VI). Bioremediation of Cr (VI) has historically relied on biostimulation of native microbial communities, partially due to the lack of knowledge of the benefits of adding enriched consortia of specialized microorganisms (bioaugmentation). To determine the merits of a specialized consortium on bio-reduction of Cr (VI), I first enriched a culture on lactate and Cr (VI). The culture had high abundance of putative Morganella species and showed rapid and sustained Cr (VI) bio-reduction compared to a subculture grown with lactate only (without Morganella). Overall, this dissertation work documents possible strategies for synergistic abiotic and biotic chlorinated ethenes reduction, and highlights that specialized consortia may benefit Cr (VI) bio-reduction.
ContributorsMohana Rangan, Srivatsan (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2022
172010-Thumbnail Image.png
Description
This dissertation encompasses the interaction of antimicrobial chemicals and emerging contaminants with multi-drug resistant (MDR) bacteria and their implications in engineered systems. The aim is to investigate the effect of combination antimicrobials on MDR bacteria E. coli, evaluate the extent of synergism and antagonism of utilizing two distinct biocidal chemicals,

This dissertation encompasses the interaction of antimicrobial chemicals and emerging contaminants with multi-drug resistant (MDR) bacteria and their implications in engineered systems. The aim is to investigate the effect of combination antimicrobials on MDR bacteria E. coli, evaluate the extent of synergism and antagonism of utilizing two distinct biocidal chemicals, and evaluate the influence of endocrine-disrupting chemicals (EDCs) on protein production in response to stressors. Resistance mechanisms of bacteria such as E. coli include the use of protein systems that efflux excess nutrients or toxic compounds. These efflux proteins activate in response to environmental stressors such as contaminants and antimicrobials to varying degrees and are major contributors to antibiotic resistance in pathogenic bacteria. As is the case with engineered microbial environments, large quantities of emerging contaminants interact with bacteria, influencing antibiotic resistance and attenuation of these chemicals to an unknown degree. Interactions of antimicrobials on MDR bacteria such as E. coli have been extensively studied for pathogens, including synergistic combinations. Despite these studies in this field, a fundamental understanding of how chemicals influence antibiotic resistance in biological processes typical of engineered microbial environments is still ongoing. The impacts of EDCs on antibiotic resistance in E. coli were investigated by the characterization of synergism for antimicrobial therapies and the extrapolation of these metrics to the cycling of EDCs in engineered systems to observe the extent of antibiotic resistance proteins to the EDCs. The impact of this work provides insight into the delicate biochemistry and ongoing resistance phenomena regarding engineered systems.
ContributorsNovoa, Diego Erick (Author) / Conroy-Ben, Otakuye (Thesis advisor) / Abbazadegan, Morteza (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2022
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
Description
The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study

The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study aims to assess the current state of research and identify trends that may guide future investigations. Following the guidelines established by PRISMA, a total sample of 26 research papers were extracted from the electronic databases, PubMed and Scopus. These papers were categorized based on their publication dates, and research questions were formulated regarding three main topics: venom type, cancer-targeting mechanism, and cancer type. Statistical analysis of the research questions was performed using 2x2 contingency tables for a chi-square test. The results of the analysis reveal a statistically significant increase in publications focused on cell death mechanisms and breast cancer in recent years. This increase in publications reflects a growing interest in the potential for venom to induce apoptosis in cancer cells and target the unique biological properties of breast cancer. Overall, this meta-analysis offers insight into the evolving sphere of venom-based cancer research, providing a glimpse into the potential trajectory of this field.
ContributorsHolder, Marina (Author) / Amdam, Gro (Thesis director) / Mana, Miyeko (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2023-12
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
171635-Thumbnail Image.png
Description
This study investigated the difference in biofilm growth on pristine and aged polypropylene microplastics exposed to Tempe Town Lake water for 8 weeks. The research question here is, does the aging of microplastic (MPs) change the biofilm formation rate and composition of the biofilm in comparison with the pristine MPs.

This study investigated the difference in biofilm growth on pristine and aged polypropylene microplastics exposed to Tempe Town Lake water for 8 weeks. The research question here is, does the aging of microplastic (MPs) change the biofilm formation rate and composition of the biofilm in comparison with the pristine MPs. To answer this question, the biofilm formation was quantified using different methods over time for both pristine polypropylene and aged polypropylene using agar plate counts and crystal violet staining. Colony counts based on agar plating showed an increase in microbial growth over the 8 weeks of treatment, with the aged MPs accumulating higher microbial counts than the pristine MPs. The diversity of the biofilm decreased over time for both MPs and the aged MPs had overall less diversity in biofilm, based on phenotype enumeration, in comparison with the pristine MPs. Higher biofilm growth on aged MPs was confirmed using crystal violet staining, which stains the negatively charged biological compounds such as proteins and the extracellular polymeric substance matrix of the biofilm. Using this complementary approach to colony counting, the same trend of higher biofilm growth on aged MPs was found. Further studies will focus on confirming the phenotype findings using microbiome analysis following DNA extraction. This project created a methodology to quantify biofilm formation on MPs, which was used to show that MPs may accumulate more biofilms in the environment as they age under sunlight.
ContributorsMushro, Noelle (Author) / Perreault, Francois (Thesis advisor) / Hamilton, Kerry (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2022
Description

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate physiology, behavior, and gene expression in the female worker caste. The pheromone acts as a signal of queen presence that suppresses worker reproduction. In the absence of reproduction, young workers focus on taking care of the queen and larvae, known as nurse tasks, while older workers forage. In nurse bees, QMP has fundamental physiological impacts, including increasing abdominal lipid stores and increasing the protein content of hypopharyngeal glands (HPG). The HPG are worker-specific glands that can synthesize royal jelly used in colony nourishment. In workers, larger HPG signifies the ability to secrete royal jelly, while shrunken glands are characteristic of foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the underlying mechanism is unclear: Does the pheromone simply make workers consume more pollen which provides lipids and protein, or does QMP also increase lipogenesis? In this study, I measured abdominal lipogenesis as fatty acid synthase (FAS) activity and monitored abdominal protein content and HPG size in caged, nurse-aged worker bees. In cages, workers were exposed to QMP or not, and they were provided with a lipid less diet in a full factorial design experiment. I found that QMP did not influence abdominal FAS activity or protein, but significantly increased HPG size. The data also revealed a significant positive correlation between abdominal protein and HPG size. My results do not support the idea that QMP modulates lipogenesis in worker bees, but my data can be interpreted to reflect that QMP mobilizes abdominal protein for the production of jelly in the HPG. This finding is in line with a previous study revealing a role of honey bee Brood Pheromone in mobilization of a major protein used in jelly production. Overall, my results support a fundamental role of QMP in worker metabolic processes associated with colony nourishment.

ContributorsOreshkova, Angela (Author) / Amdam, Gro (Thesis director) / Scofield, Sebastian (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05