Matching Items (455)
130417-Thumbnail Image.png
Description
The increase of transmission line thermal ratings by reconductoring with high temperature low sag conductors is a comparatively new technology introduced for transmission expansion. A special design permits high temperature low sag conductors to operate at higher temperatures, therefore allowing passage of higher current and, thus, increasing the thermal rating

The increase of transmission line thermal ratings by reconductoring with high temperature low sag conductors is a comparatively new technology introduced for transmission expansion. A special design permits high temperature low sag conductors to operate at higher temperatures, therefore allowing passage of higher current and, thus, increasing the thermal rating of the transmission line. The comparatively high cost of high temperature low sag conductors may be an obstacle to its large-scale implementation. This article evaluates the expenditures for transmission line reconductoring using high temperature low sag, the consequent benefits obtained from the potential decrease in operating cost for thermally limited power transmission systems. Estimates of the “payback period” are used to evaluate the cost effectiveness of reconductoring with high temperature low sag. The evaluation is performed using a 225 bus equivalent of the 2012 summer peak Arizona portion of the Western Electricity Coordinating Council. The method is offered for transmission expansion analysis in which an economic benefit is calculated to assist in the transmission expansion decision.
Created2015-02-07
130420-Thumbnail Image.png
Description

Eigenvalues of the 3D critical point equation (∇u)ν = λν are normally computed numerically. In the letter, we present analytic solutions for 3D swirling strength in both compressible and incompressible flows. The solutions expose functional dependencies that cannot be seen in numerical solutions. To illustrate, we study the difference between

Eigenvalues of the 3D critical point equation (∇u)ν = λν are normally computed numerically. In the letter, we present analytic solutions for 3D swirling strength in both compressible and incompressible flows. The solutions expose functional dependencies that cannot be seen in numerical solutions. To illustrate, we study the difference between using fluctuating and total velocity gradient tensors for vortex identification. Results show that mean shear influences vortex detection and that distortion can occur, depending on the strength of mean shear relative to the vorticity at the vortex center.

Created2014-08-01
130422-Thumbnail Image.png
Description
The flexural behavior of epoxies was investigated by performing mechanical tests and applying statistical Weibull theory and analytical methods to the results. The effects of loading systems and environmental conditions were also considered. Three kinds of epoxies were studied: Epon E863, PRI 2002, and PR520. In total, 53 three-point-bending (3PB)

The flexural behavior of epoxies was investigated by performing mechanical tests and applying statistical Weibull theory and analytical methods to the results. The effects of loading systems and environmental conditions were also considered. Three kinds of epoxies were studied: Epon E863, PRI 2002, and PR520. In total, 53 three-point-bending (3PB) Epon E863 samples and 26 3PB PR520 were tested immediately after curing, together with 26 four-point-bending (4PB) PRI2002 samples stored at 60°C and 90% Rh for 48 weeks. The Weibull parameters were estimated using both linear regression and the moments method. The statistical character of the Weibull model leads to uncertainty in the evaluated parameters, even for a large number of experiments. This study analyzed the ratio of flexural strength to tensile strength in bulk epoxy resin polymers. An analytical method previously developed by the authors to study the relationship between uniaxial tension/compression stress-strain curves and flexural load-deflection response was used to obtain the ratio. The results show that the Weibull model overpredicted the aforementioned ratio in different load arrangements.
Created2014-12-01
130427-Thumbnail Image.png
Description
Identification of early damage in polymer composites is of great importance. We have incorporated cyclobutane-containing cross-linked polymers into an epoxy matrix, studied the effect on thermal and mechanical properties, and, more importantly, demonstrated early damage detection through mechanically induced fluorescence generation. Two cinnamate derivatives, 1,1,1-tris(cinnamoyloxymethyl) ethane (TCE) and poly(vinyl cinnamate)

Identification of early damage in polymer composites is of great importance. We have incorporated cyclobutane-containing cross-linked polymers into an epoxy matrix, studied the effect on thermal and mechanical properties, and, more importantly, demonstrated early damage detection through mechanically induced fluorescence generation. Two cinnamate derivatives, 1,1,1-tris(cinnamoyloxymethyl) ethane (TCE) and poly(vinyl cinnamate) (PVCi), were photoirradiated to produce cyclobutane-containing polymer. The effects on the thermal and mechanical properties with the addition of cyclobutane-containing polymer into epoxy matrix were investigated. The emergence of cracks was detected by fluorescence at a strain level just beyond the yield point of the polymer blends, and the fluorescence intensified with accumulation of strain. Overall, the results show that damage can be detected through fluorescence generation along crack propagation.
Created2014-09-01
130428-Thumbnail Image.png
Description
The impact of increasing penetration of converter control-based generators (CCBGs) in a large-scale power system is assessed through a model based small signal stability analysis. Three test bed cases for the years 2010, 2020, and 2022 of the Western Electricity Coordinating Council (WECC) in the United States are used for

The impact of increasing penetration of converter control-based generators (CCBGs) in a large-scale power system is assessed through a model based small signal stability analysis. Three test bed cases for the years 2010, 2020, and 2022 of the Western Electricity Coordinating Council (WECC) in the United States are used for the analysis. Increasing penetration of wind-based Type 3 and wind-based Type 4 and PV Solar CCBGs is used in the tests. The participation and interaction of CCBGs and synchronous generators in traditional electromechanical interarea modes is analyzed. Two new types of modes dominated by CCBGs are identified. The characteristics of these new modes are described and compared to electromechanical modes in the frequency domain. An examination of the mechanism of the interaction between the CCBG control states and the synchronous generator control states is presented and validated through dynamic simulations. Actual system and forecast load data are used throughout.
Created2014-09-01
130433-Thumbnail Image.png
Description
The Physics and Chemistry of Surfaces and Interfaces conference has maintained a focus on the interfacial and surface properties of materials since its initiation in 1974. The conference continues to be a major force in this field, bringing together scientists from a variety of disciplines to focus upon the science

The Physics and Chemistry of Surfaces and Interfaces conference has maintained a focus on the interfacial and surface properties of materials since its initiation in 1974. The conference continues to be a major force in this field, bringing together scientists from a variety of disciplines to focus upon the science of interfaces and surfaces. Here, a historical view of the development of the conference and a discussion of some of the themes that have been focal points for many years are presented.
Created2013
Description
The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria

The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria existing in human brains, which can be investigated in honeybee brains due to their well-documented structure. The purpose of this study is to establish if lipopolysaccharide—a molecule on bacteria membranes—is present in the honeybee brain and if it colocalizes with vitellogenin—an immune mediator. Additionally, this study also seeks to establish the efficacy of embedding tissue samples in resin and performing immunohistochemistry for vitellogenin and lipopolysaccharide on sections.
ContributorsStrange, Amalie Sofie (Co-author) / Strange, Amalie (Co-author) / Amdam, Gro (Thesis director) / Baluch, Page (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130355-Thumbnail Image.png
Description
Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of

Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology.
Results
Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed.
Conclusions
Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general.
ContributorsGraham, Allie M. (Author) / Munday, Michael D. (Author) / Kaftanoglu, Osman (Author) / Page, Robert (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2011-04-13
130363-Thumbnail Image.png
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis,

Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
ContributorsYuan, Lei (Author) / Woodard, Alexander (Author) / Ji, Shuiwang (Author) / Jiang, Yuan (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / Ira A. Fulton Schools of Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2012-05-23