Matching Items (76)
Description

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate physiology, behavior, and gene expression in the female worker caste. The pheromone acts as a signal of queen presence that suppresses worker reproduction. In the absence of reproduction, young workers focus on taking care of the queen and larvae, known as nurse tasks, while older workers forage. In nurse bees, QMP has fundamental physiological impacts, including increasing abdominal lipid stores and increasing the protein content of hypopharyngeal glands (HPG). The HPG are worker-specific glands that can synthesize royal jelly used in colony nourishment. In workers, larger HPG signifies the ability to secrete royal jelly, while shrunken glands are characteristic of foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the underlying mechanism is unclear: Does the pheromone simply make workers consume more pollen which provides lipids and protein, or does QMP also increase lipogenesis? In this study, I measured abdominal lipogenesis as fatty acid synthase (FAS) activity and monitored abdominal protein content and HPG size in caged, nurse-aged worker bees. In cages, workers were exposed to QMP or not, and they were provided with a lipid less diet in a full factorial design experiment. I found that QMP did not influence abdominal FAS activity or protein, but significantly increased HPG size. The data also revealed a significant positive correlation between abdominal protein and HPG size. My results do not support the idea that QMP modulates lipogenesis in worker bees, but my data can be interpreted to reflect that QMP mobilizes abdominal protein for the production of jelly in the HPG. This finding is in line with a previous study revealing a role of honey bee Brood Pheromone in mobilization of a major protein used in jelly production. Overall, my results support a fundamental role of QMP in worker metabolic processes associated with colony nourishment.

ContributorsOreshkova, Angela (Author) / Amdam, Gro (Thesis director) / Scofield, Sebastian (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

This thesis project is a first-grade curriculum that is tailored for schools with school gardens. The curriculum contains worksheets and activities for the students, making it easier for teachers to take care of the school garden while also playing a part in fighting food injustice. The curriculum has 4 subjects:

This thesis project is a first-grade curriculum that is tailored for schools with school gardens. The curriculum contains worksheets and activities for the students, making it easier for teachers to take care of the school garden while also playing a part in fighting food injustice. The curriculum has 4 subjects: Math, Language Arts, Science, and Nutrition Education.

ContributorsShah, Hirni (Author) / McGregor, Joan (Thesis director) / Lee, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Social Transformation (Contributor)
Created2023-05
Description

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive symptoms, and anxiety for midlife women with mobility impairments specifically. Overall, it was found that midlife women with mobility impairments experienced better sleep when they focused on health information podcasts in comparison to Tai Chi. Change in anxiety and depressive symptoms were negligible.

ContributorsRastkhiz, Tara (Author) / Carvallo, Joanna (Co-author) / Lee, Rebecca (Thesis director) / Rodney, Joseph (Committee member) / Santana, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
Description

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive symptoms, and anxiety for midlife women with mobility impairments specifically. Overall, it was found that midlife women with mobility impairments experienced better sleep when they focused on health information podcasts in comparison to Tai Chi. Change in anxiety and depressive symptoms were negligible.

ContributorsCarvallo, Joanna (Author) / Rastkhiz, Tara (Co-author) / Lee, Rebecca (Thesis director) / Joseph, Rodney (Committee member) / Santana, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022.

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022. The patterns of publications on specific topics over time can tell us what is perceived as a current major cause by physicians, public leaders, researchers, and the public. A deeper dive into systemic inequality as a cause of maternal morbidity and mortality highlights it as a major contributor to these high rates, but that progress is slowly being made through the implementation of detection and prevention tactics, as well as accessible prenatal programs and care.

ContributorsRettig, Lelia (Author) / Amdam, Gro (Thesis director) / Bang, Christofer (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2023-05
155013-Thumbnail Image.png
Description
Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs

Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs may contribute to behavioral modifications. Heavy metals and metalloids are persistent environmental pollutants and induce neurological deficits in multiple organisms. However, in the honey bee, an important insect pollinator, little is known about the sublethal effects of heavy metal and metalloid toxicity though they are exposed to these toxins chronically in some environments. In this thesis I investigate the sublethal effects of copper, cadmium, lead, and selenium on honey bee behavior and identify potential mechanisms mediating the behavioral modifications. I explore the honey bees’ ability to detect these toxins, their sensory perception of sucrose following toxin exposure, and the effects of toxin ingestion on performance during learning and memory tasks. The effects depend on the specific metal. Honey bees detect and reject copper containing solutions, but readily consume those contaminated with cadmium and lead. And, exposure to lead may alter the sensory perception of sucrose. I also demonstrate that acute selenium exposure impairs learning and long-term memory formation or recall. Localizing selenium accumulation following chronic exposure reveals that damage to non-neural organs and peripheral sensory structures is more likely than direct neurotoxicity. Probable mechanisms include gut microbiome alterations, gut lining

damage, immune system activation, impaired protein function, or aberrant DNA methylation. In the case of DNA methylation, I demonstrate that inhibiting DNA methylation dynamics can impair long-term memory formation, while the nurse-to- forager transition is not altered. These experiments could serve as the bases for and reference groups of studies testing the effects of metal or metalloid toxicity on DNA methylation. Each potential mechanism provides an avenue for investigating how neural function is influenced by the physiological status of non-neural organs. And from an ecological perspective, my results highlight the need for environmental policy to consider sublethal effects in determining safe environmental toxin loads for honey bees and other insect pollinators.
ContributorsBurden, Christina Marie (Author) / Amdam, Gro (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Gallitano-Mendel, Amelia (Committee member) / Harrison, Jon (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2016
154744-Thumbnail Image.png
Description
Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building

Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building stocks are quasi-permanent infrastructures which have enduring influence on urban energy consumption, and research is needed to understand: 1) how development patterns constrain energy use decisions and 2) how cities can achieve energy and environmental goals given the constraints of the stock. This requires a thorough evaluation of both the growth of the stock and as well as the spatial distribution of use throughout the city. In this dissertation, a case study in Los Angeles County, California (LAC) is used to quantify urban growth, forecast future energy use under climate change, and to make recommendations for mitigating energy consumption increases. A reproducible methodological framework is included for application to other urban areas.

In LAC, residential electricity demand could increase as much as 55-68% between 2020 and 2060, and building technology lock-in has constricted the options for mitigating energy demand, as major changes to the building stock itself are not possible, as only a small portion of the stock is turned over every year. Aggressive and timely efficiency upgrades to residential appliances and building thermal shells can significantly offset the projected increases, potentially avoiding installation of new generation capacity, but regulations on new construction will likely be ineffectual due to the long residence time of the stock (60+ years and increasing). These findings can be extrapolated to other U.S. cities where the majority of urban expansion has already occurred, such as the older cities on the eastern coast. U.S. population is projected to increase 40% by 2060, with growth occurring in the warmer southern and western regions. In these growing cities, improving new construction buildings can help offset electricity demand increases before the city reaches the lock-in phase.
ContributorsReyna, Janet Lorel (Author) / Chester, Mikhail V (Thesis advisor) / Gurney, Kevin (Committee member) / Reddy, T. Agami (Committee member) / Rey, Sergio (Committee member) / Arizona State University (Publisher)
Created2016
129588-Thumbnail Image.png
Description

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations.

We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data.

Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.

ContributorsCiais, P. (Author) / Dolman, A. J. (Author) / Bombelli, A. (Author) / Duren, R. (Author) / Peregon, A. (Author) / Rayner, P. J. (Author) / Miller, C. (Author) / Gobron, N. (Author) / Kinderman, G. (Author) / Marland, G. (Author) / Gruber, N. (Author) / Chevallier, F. (Author) / Andres, R. J. (Author) / Balsamo, G. (Author) / Bopp, L. (Author) / Breon, F. -M. (Author) / Broquet, G. (Author) / Dargaville, R. (Author) / Battin, T. J. (Author) / Borges, A. (Author) / Bovensmann, H. (Author) / Buchwitz, M. (Author) / Butler, J. (Author) / Canadell, J. G. (Author) / Cook, R. B. (Author) / DeFries, R. (Author) / Engelen, R. (Author) / Gurney, Kevin (Author) / Heinze, C. (Author) / Heimann, M. (Author) / Held, A. (Author) / Henry, M. (Author) / Law, B. (Author) / Luyssaert, S. (Author) / Miller, J. (Author) / Moriyama, T. (Author) / Moulin, C. (Author) / Myneni, R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129478-Thumbnail Image.png
Description

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Regridding of fossil fuel CO2 emissions (FFCO2) from fine to coarse grids to enable atmospheric transport simulations can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. For example, emissions originally emanating from the land are emitted from a grid cell for which the vertical mixing reflects the roughness and/or surface energy exchange of an ocean surface. We test this potential "dynamical inconsistency" by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are as follows: (1) a commonly used method that allocates emissions to grid cells with no attempt to ensure dynamical consistency with atmospheric transport and (2) an improved method that reallocates emissions to grid cells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 TgC grid cell-1 yr-1 (−3.39 kgC m-2 yr-1) to +30.0 TgC grid cell-1 yr-1 (+2.6 kgC m-2 yr-1) along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential problem and ensure flux and dynamical consistency.

ContributorsZhang, X. (Author) / Gurney, Kevin (Author) / Rayner, P. (Author) / Liu, Y. (Author) / Asefi-Najafabady, Salvi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
Description

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare.

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid.

Results: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides.

Conclusions: The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

ContributorsRoss, Caitlin R. (Author) / DeFelice, Dominick S. (Author) / Hunt, Greg J. (Author) / Ihle, Kate (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-21