Matching Items (127)
131287-Thumbnail Image.png
Description
Thousands of human lives are lost every day due to chronic diseases, some more preventable than others. For years, the gold standard for diagnosing and monitoring these diseases has been through traditional methods such as individualized doctor-patient clinical evaluations, usually involving laboratory tests. These methods, though effective, can be costly,

Thousands of human lives are lost every day due to chronic diseases, some more preventable than others. For years, the gold standard for diagnosing and monitoring these diseases has been through traditional methods such as individualized doctor-patient clinical evaluations, usually involving laboratory tests. These methods, though effective, can be costly, time-consuming, and fail to encompass an overarching perspective of the health profile of the larger population. Wastewater-based epidemiology (WBE) has successfully been employed for decades as a population-level data source informing on the consumption of licit and illicit substance use. It also is showing promise for its use as a community-wide diagnostic tool for broader public health measurements. This literature review constitutes a theoretical evaluation of the potential use of WBE for monitoring the top two deadly diseases in the United States; cardiovascular disease (CVD) and cancer. Literature-reported metabolites indicative of these diseases were evaluated to determine if they were capable of being identified and monitored in wastewater. Potential analytes include cardiac-specific troponin, α-fenotroin, and inositol. Results obtained within suggest WBE could be used as a viable and economical tool to track and monitor the top deadly diseases in human populations. This methodology could be implemented in tandem with current practices in order to provide a more holistic understanding of prevalence and risk for CVD and cancer.
ContributorsAmin, Vivek (Author) / Halden, Rolf (Thesis director) / Niebuhr, Robert (Committee member) / Bowes, Devin (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131199-Thumbnail Image.png
Description
The experiments conducted in this report supported previous evidence (Bethany et al., 2019) that a newly identified predatory bacterium causes a higher rate of mortality in the biological soil crust cyanobacterium M. vaginatus when in hot soils than in cold soils. I predicted that the extracellular propagules of this predatory

The experiments conducted in this report supported previous evidence (Bethany et al., 2019) that a newly identified predatory bacterium causes a higher rate of mortality in the biological soil crust cyanobacterium M. vaginatus when in hot soils than in cold soils. I predicted that the extracellular propagules of this predatory bacterium were inactivated at seasonally low temperatures, rendering them non-viable when introduced to M. vaginatus at room temperature. However, I found that the predatory bacterium became only transiently inactive at low temperatures, recovering its pathogenicity when later exposed to warmer temperatures. By contrast, inactivation of infectivity was complete by exposure in both liquid and dry conditions for five days at 40 °C. I also expected that its infectivity towards M. vaginatus was temperature dependent. Indeed, infection was hampered and did not cause high mortality when predator and prey were incubated at or below 10 °C, which could have been due to slowed metabolisms of M. vaginatus or to an inability of the predatory bacterium to attack in cold conditions. Above 10 °C, when M. vaginatus grew faster, time to full death of predator/prey incubations correlated with the rate of growth of healthy cultures.
The experiments in this study observed a correlation between the growth rate of uninfected cultures and the decay rate of infected cultures, meaning that temperatures that cultures that displayed a higher growth rate for uninfected M. vaginatus would die faster when infected with the predatory bacterium. Infected cultures that were incubated at temperatures 4 and 10 °C did not display death and this could have been due to lower activity of M. vaginatus at lower temperatures or the inability for the predatory bacterium to attack at lower temperatures.
ContributorsAhamed, Anisa Nour (Author) / Garcia-Pichel, Ferran (Thesis director) / Giraldo Silva, Ana Maria (Committee member) / Bethany Rakes, Julie (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132294-Thumbnail Image.png
Description
Microplastics are defined as small pieces of plastics that are less than five millimeters in size. These microplastics can vary in their appearance, are known to be harmful to aquatic life and can threaten life cycles of marine organisms because of their chemical make-up and the toxic additives used in

Microplastics are defined as small pieces of plastics that are less than five millimeters in size. These microplastics can vary in their appearance, are known to be harmful to aquatic life and can threaten life cycles of marine organisms because of their chemical make-up and the toxic additives used in their manufacture. Although small in size, it is hypothesized that microplastics can serve as an example of how human activities can alter ecosystems near and far. To investigate the implications and determine the potential impact of microplastics on a protected atoll’s ecosystems, red-footed booby (Sula sula) guano samples from six locations on Palmyra Atoll were acquired from North Carolina State University via The Nature Conservancy and were inspected for the presence of microplastics. Each of the guano samples were weighed and prepared via wet oxidation. Microplastic fibers were detected via stereoscope microscopy and analyzed for chemical composition via Raman spectroscopy. All six sampling locations within Palmyra Atoll contained microplastic fibers identified as polyethylene terephthalate, with North-South Causeway and Eastern Island having the highest average number of microplastic fibers found per gram of guano sample (n = 0.611). These data provide evidence that seabirds can serve as vectors for the spread of microplastic pollution. This research lends context to the widespread impact of plastic pollution and states possible implications of its presence in delicate ecosystems.
ContributorsAnderson, Alyssa Cerise (Author) / Lisenbee, Cayle (Thesis director) / Halden, Rolf (Committee member) / Rolsky, Charles (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria

The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria existing in human brains, which can be investigated in honeybee brains due to their well-documented structure. The purpose of this study is to establish if lipopolysaccharide—a molecule on bacteria membranes—is present in the honeybee brain and if it colocalizes with vitellogenin—an immune mediator. Additionally, this study also seeks to establish the efficacy of embedding tissue samples in resin and performing immunohistochemistry for vitellogenin and lipopolysaccharide on sections.
ContributorsStrange, Amalie Sofie (Co-author) / Strange, Amalie (Co-author) / Amdam, Gro (Thesis director) / Baluch, Page (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131736-Thumbnail Image.png
Description
Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption

Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption of twelve narcotics within a collegiate setting from January 2018 to May 2018 at a Southwestern U.S. university. The present follow-up study was designed to identify potential changes in the consumption patterns of prescription and illicit drugs as the academic year progressed. Samples were collected from two sites that capture nearly 100% of campus-generated wastewater. Seven consecutive 24-hour composite raw wastewater samples were collected each month (n = 68) from both locations. The study identified the average consumption of select narcotics, in units of mg/day/1000 persons in the following order: cocaine (528 ± 266), heroin (404 ± 315), methylphenidate (343 ± 396), amphetamine (308 ±105), ecstasy (MDMA; 114 ± 198), oxycodone (57 ± 28), methadone (58 ± 73), and codeine (84 ± 40). The consumption of oxycodone, methadone, heroin, and cocaine were identified as statistically lower in the Spring 2018 semester compared to the Fall 2017. Universities may need to increase drug education for the fall semester to lower the consumption of drugs in that semester. Data from this research encompasses both human health and the built environment by evaluating public health through collection of municipal wastewater, allowing public health officials rapid and robust narcotic consumption data while maintaining the anonymity of the students, faculty, and staff.
ContributorsCarlson, Alyssa Rose (Author) / Halden, Rolf (Thesis director) / Gushgari, Adam (Committee member) / School of Human Evolution & Social Change (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131610-Thumbnail Image.png
Description

The combined use of methamphetamine and opioids has been reported to be on the rise throughout the United States (U.S.). However, our knowledge of this phenomenon is largely based upon reported overdoses and overdose-related deaths, law enforcement seizures, and drug treatment records; data that are often slow, restricted, and only

The combined use of methamphetamine and opioids has been reported to be on the rise throughout the United States (U.S.). However, our knowledge of this phenomenon is largely based upon reported overdoses and overdose-related deaths, law enforcement seizures, and drug treatment records; data that are often slow, restricted, and only track a portion of the population participating in drug consumption activities. As an alternative, wastewater-based epidemiology (WBE) has the capability to track licit and illicit drug trends within an entire community, at a low cost and in near real-time, while providing anonymity to those contributing to the sewer shed. In this study, wastewater was collected from two Midwestern U.S. cities (2017-2019) and analyzed for the prevalence of methamphetamine and the opioids oxycodone, codeine, fentanyl, tramadol, hydrocodone, and hydromorphone. Monthly 24-hour time-weighted composite samples (n = 48) from each city were analyzed using isotope dilution liquid chromatography tandem mass spectrometry. Results showed that methamphetamine and total opioid consumption (milligram morphine equivalents) in City 1 were strongly correlated only in 2017 (Spearman rank order correlation coefficient, ρ = 0.78), the relationship driven by fentanyl, hydrocodone, and hydromorphone. For City 2, methamphetamine and total opioid consumption were strongly positively correlated during the entire study (ρ = 0.54), with the correlations driven by hydrocodone and hydromorphone. In both cities, hydrocodone and hydromorphone mass loads were highly correlated, suggesting a parent and metabolite relationship. WBE provides important insights into licit and illicit drug consumption patterns in near real-time as they evolve; important information for community stakeholders in municipalities across the U.S.

ContributorsClick, Kathleen Grace (Author) / Halden, Rolf (Thesis director) / Gushgari, Adam (Committee member) / Driver, Erin (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132548-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a neurodegenerative disease resulting in loss of cognitive function and is not considered part of the typical aging process. Recently, research is being conducted to study environmental effects on AD because the exact molecular mechanisms behind AD are not known. The associations between various toxins and

Alzheimer’s disease (AD) is a neurodegenerative disease resulting in loss of cognitive function and is not considered part of the typical aging process. Recently, research is being conducted to study environmental effects on AD because the exact molecular mechanisms behind AD are not known. The associations between various toxins and AD have been mixed and unclear. In order to better understand the role of the environment and toxic substances on AD, we conducted a literature review and geospatial analysis of environmental, specifically wastewater, contaminants that have biological plausibility for increasing risk of development or exacerbation of AD. This literature review assisted us in selecting 10 wastewater toxic substances that displayed a mixed or one-sided relationship with the symptoms or prevalence of Alzheimer’s for our data analysis. We utilized data of toxic substances in wastewater treatment plants and compared them to the crude rate of AD in the different Census regions of the United States to test for possible linear relationships. Using data from the Targeted National Sewage Sludge Survey (TNSSS) and the Centers for Disease Control and Prevention (CDC), we developed an application using R Shiny to allow users to interactively visualize both datasets as choropleths of the United States and understand the importance of this area of research. Pearson’s correlation coefficient was calculated resulting in arsenic and cadmium displaying positive linear correlations with AD. Other analytes from this statistical analysis demonstrated mixed correlations with AD. This application and data analysis serve as a model in the methodology for further geospatial analysis on AD. Further data analysis and visualization at a lower level in terms of scope is necessary for more accurate and reliable evidence of a causal relationship between the wastewater substance analytes and AD.
GitHub Repository: https://github.com/komal-agrawal/AD_GIS.git
ContributorsAgrawal, Komal (Author) / Scotch, Matthew (Thesis director) / Halden, Rolf (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130355-Thumbnail Image.png
Description
Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of

Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology.
Results
Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed.
Conclusions
Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general.
ContributorsGraham, Allie M. (Author) / Munday, Michael D. (Author) / Kaftanoglu, Osman (Author) / Page, Robert (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2011-04-13
Description
As a biology major, many of my classes have included studying the fundamentals of genetics or investigating the way genetics influence heritability of certain diseases. When I began taking upper-division psychology courses, the genetic factors of psychological disorders became an important part of the material. I was exposed to a

As a biology major, many of my classes have included studying the fundamentals of genetics or investigating the way genetics influence heritability of certain diseases. When I began taking upper-division psychology courses, the genetic factors of psychological disorders became an important part of the material. I was exposed to a new idea: that genes were equally important in studying somatic diseases as they were to psychological disorders. As important as genetics are to psychology, they are not part of the required courses for the major; I found many of my peers in psychology courses did not have a grasp on genetic fundamentals in the same way biology majors did. This was a disconnect that I also found in my own life outside the classroom. Growing up, my mother consistently reminded me to limit my carbs and watch my sugars. Diabetes was very prevalent in my family and I was also at risk. I was repeatedly reminded of my own genes and the risk I faced in having this biological disorder. However, my friend whose father was an alcoholic did not warn her in the same way. While she did know of her father's history, she was not warned of the potential for her to become an alcoholic. While my behavior was altered due to my mother's warning and my own knowledge of the genetic risk of diabetes, I wondered if other people at genetic risk of psychological disorders also altered their behavior. Through my thesis, I hope to answer if students have the same perceived genetic knowledge of psychological diseases as they do for biological ones. In my experience, it is not as well known that psychological disorders have genetic factors. For example, alcohol is commonly used by college students. Alcohol use disorder is present in 16.2% of college aged students and "40-60% of the variance of risk explained by genetic influences." (DSM V, 2013) Compare this to diabetes that has "several common genetic variants that account for about 10% of the total genetic effects," but is much more openly discussed even though it is less genetically linked. (McVay, 2015)This stems from the stigma/taboo surrounding many psychological disorders. If students do know that psychological disorder are genetically influenced, I expect their knowledge to be skewed or inaccurate. As part of a survey, I hope to see how strong they believe the genetic risk of certain diseases are as well as where they gained this knowledge. I hypothesize that only students with a background in psychology will be able to correctly assign the genetic risk of the four presented diseases. Completing this thesis will require in-depth study of the genetic factors, an understanding of the way each disease is perceived and understood by the general population, and a statistical analysis of the survey responses. If the survey data turns out as I expect where students do not have a strong grasp of diseases that could potentially influence their own health, I hope to find a way to educate students on biological and psychological diseases, their genetic risk, and how to speak openly about them.
ContributorsParasher, Nisha (Author) / Amdam, Gro (Thesis director) / Toft, Carolyn Cavaugh (Committee member) / Ostwald, Madeleine (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05