Matching Items (114)
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
Description
The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study

The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study aims to assess the current state of research and identify trends that may guide future investigations. Following the guidelines established by PRISMA, a total sample of 26 research papers were extracted from the electronic databases, PubMed and Scopus. These papers were categorized based on their publication dates, and research questions were formulated regarding three main topics: venom type, cancer-targeting mechanism, and cancer type. Statistical analysis of the research questions was performed using 2x2 contingency tables for a chi-square test. The results of the analysis reveal a statistically significant increase in publications focused on cell death mechanisms and breast cancer in recent years. This increase in publications reflects a growing interest in the potential for venom to induce apoptosis in cancer cells and target the unique biological properties of breast cancer. Overall, this meta-analysis offers insight into the evolving sphere of venom-based cancer research, providing a glimpse into the potential trajectory of this field.
ContributorsHolder, Marina (Author) / Amdam, Gro (Thesis director) / Mana, Miyeko (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2023-12
Description

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate physiology, behavior, and gene expression in the female worker caste. The pheromone acts as a signal of queen presence that suppresses worker reproduction. In the absence of reproduction, young workers focus on taking care of the queen and larvae, known as nurse tasks, while older workers forage. In nurse bees, QMP has fundamental physiological impacts, including increasing abdominal lipid stores and increasing the protein content of hypopharyngeal glands (HPG). The HPG are worker-specific glands that can synthesize royal jelly used in colony nourishment. In workers, larger HPG signifies the ability to secrete royal jelly, while shrunken glands are characteristic of foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the underlying mechanism is unclear: Does the pheromone simply make workers consume more pollen which provides lipids and protein, or does QMP also increase lipogenesis? In this study, I measured abdominal lipogenesis as fatty acid synthase (FAS) activity and monitored abdominal protein content and HPG size in caged, nurse-aged worker bees. In cages, workers were exposed to QMP or not, and they were provided with a lipid less diet in a full factorial design experiment. I found that QMP did not influence abdominal FAS activity or protein, but significantly increased HPG size. The data also revealed a significant positive correlation between abdominal protein and HPG size. My results do not support the idea that QMP modulates lipogenesis in worker bees, but my data can be interpreted to reflect that QMP mobilizes abdominal protein for the production of jelly in the HPG. This finding is in line with a previous study revealing a role of honey bee Brood Pheromone in mobilization of a major protein used in jelly production. Overall, my results support a fundamental role of QMP in worker metabolic processes associated with colony nourishment.

ContributorsOreshkova, Angela (Author) / Amdam, Gro (Thesis director) / Scofield, Sebastian (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
161951-Thumbnail Image.png
Description
Particulate Guanylyl Cyclase Receptor A (pGC-A) is an atrial natriuretic peptide receptor, which plays a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain of pGC-A interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop a method

Particulate Guanylyl Cyclase Receptor A (pGC-A) is an atrial natriuretic peptide receptor, which plays a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain of pGC-A interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop a method that can regulate pGC-A, structural information regarding its intact form is necessary. Currently, only the extracellular domain structure of rat pGC-A has been determined. However, structural data regarding the transmembrane domain, as well as functional intracellular domain regions, need to be elucidated.This dissertation presents detailed information regarding pGC-A expression and optimization in the baculovirus expression vector system, along with the first purification method for purifying functional intact human pGC-A. The first in vitro evidence of a purified intact human pGC-A tetramer was detected in detergent micellar solution. Intact pGC-A is currently proposed to function as a homodimer. Upon analyzing my findings and acknowledging that dimer formation is required for pGC-A functionality, I proposed the first tetramer complex model composed of two functional subunits (homodimer). Forming tetramer complexes on the cell membrane increases pGC-A binding efficiency and ligand sensitivity. Currently, a two-step mechanism has been proposed for ATP-dependent pGC-A signal transduction. Based on cGMP functional assay results, it can be suggested that the binding ligand also moderately activates pGC-A, and that ATP is not crucial for the activation of guanylyl cyclase. Instead, three modulators can regulate different activation levels in intact pGC-A. Crystallization of purified intact pGC-A was performed to determine its structure. During the crystallization condition screening process, I successfully selected seven promising initial crystallization conditions for intact human pGC-A crystallization. One selected condition led to the formation of excellent needle-shaped crystals. During the serial crystallography diffraction experiment, five diffraction patterns were detected. The highest diffraction resolution spot reached 3 Å. This work will allow the determination of the intact human pGC-A structure while also providing structural information on the protein signal transduction mechanism. Further structural knowledge may potentially lead to improved drug design. More precise mutation experiments could help verify the current pGC-A signal transduction and activation mechanism.
ContributorsZhang, Shangji (Author) / Fromme, Petra (Thesis advisor) / Johnston, Stephen (Committee member) / Mazor, Yuval (Committee member) / Arizona State University (Publisher)
Created2021
160098-Thumbnail Image.png
Description

The purpose of this study was to determine the feasibility of a mindfulness-based intervention among pregnant women (12-20 weeks’ gestation) using a mobile meditation app, Calm. This study involved 100 participants who were recruited nationally due to the COVID-19 pandemic. This study was reviewed and approved by the Institutional Review

The purpose of this study was to determine the feasibility of a mindfulness-based intervention among pregnant women (12-20 weeks’ gestation) using a mobile meditation app, Calm. This study involved 100 participants who were recruited nationally due to the COVID-19 pandemic. This study was reviewed and approved by the Institutional Review Board of Arizona State University (STUDY STUDY00010467). All participants were provided an informed consent document and provided electronic consent prior to enrollment and participation in this study. This study was a randomized, controlled trial (trial registration: ClinicalTrials.gov NCT04264910). Participants randomized to the intervention group were asked to participate in a minimum of 10 minutes of daily meditation using a mindfulness meditation mobile app (i.e., Calm) for the duration of their pregnancy. Participants randomized to the standard of care control group were given access to the app after they gave birth. Both the intervention and control groups were administered surveys that measured feasibility outcomes, perceived stress, mindfulness, self-compassion, impact from COVID-19, pregnancy-related anxiety, depression, emotional regulation, sleep, and childbirth experience at four time points: baseline (12-20 weeks gestation), midline (24 weeks gestation), postintervention (36 weeks gestation), and follow-up survey (3-5 weeks postpartum). Data is currently being analyzed for publication.

ContributorsLister, Haily (Author) / Huberty, Jennifer (Thesis director) / Larkey, Linda (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022.

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022. The patterns of publications on specific topics over time can tell us what is perceived as a current major cause by physicians, public leaders, researchers, and the public. A deeper dive into systemic inequality as a cause of maternal morbidity and mortality highlights it as a major contributor to these high rates, but that progress is slowly being made through the implementation of detection and prevention tactics, as well as accessible prenatal programs and care.

ContributorsRettig, Lelia (Author) / Amdam, Gro (Thesis director) / Bang, Christofer (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2023-05
156759-Thumbnail Image.png
Description
College students experience a considerable amount of stress. Unmanaged stress is associated with poor academic performance, health risk behaviors (i.e., inadequate sleep and physical activity, alcohol consumption, poor dietary behaviors), and poor mental health. Coping with stress has become a priority among universities. The most tested stress-related programs to date

College students experience a considerable amount of stress. Unmanaged stress is associated with poor academic performance, health risk behaviors (i.e., inadequate sleep and physical activity, alcohol consumption, poor dietary behaviors), and poor mental health. Coping with stress has become a priority among universities. The most tested stress-related programs to date have been mindfulness-based and face-to-face. These programs demonstrated significant improvements in stress, mindfulness, and self-compassion among college students. However, they may be burdensome to students as studies report low attendance and low compliance due to class conflicts or not enough time. Few interventions have used more advanced technologies (i.e., mobile apps) as a mode of delivery. The purpose of this study is to report adherence to a consumer-based mindfulness meditation mobile application (i.e., Calm) and test its effects on stress, mindfulness, and self-compassion in college students. We will also explore what the relationship is between mindfulness and health behaviors.

College students were recruited using fliers on college campus and social media. Eligible participants were randomized to one of two groups: (1) Intervention - meditate using Calm, 10 min/day for eight weeks and (2) Control – no participation in mindfulness practices (received the Calm application after 12-weeks). Stress, mindfulness, and self-compassion and health behaviors (i.e., sleep disturbance, alcohol consumption, physical activity, fruit and vegetable consumption) were measured using self-report. Outcomes were measured at baseline and week eight.

Of the 109 students that enrolled in the study, 41 intervention and 47 control participants were included in analysis. Weekly meditation participation averaged 38 minutes with 54% of participants completing at least half (i.e., 30 minutes) of meditations. Significant changes between groups were found in stress, mindfulness, and self-compassion (all P<0.001) in favor of the intervention group. A significant negative association (p<.001) was found between total mindfulness and sleep disturbance.

An eight-week consumer-based mindfulness meditation mobile application (i.e., Calm) was effective in reducing stress, improving mindfulness and self-compassion among undergraduate college students. Mobile applications may be a feasible, effective, and less burdensome way to reduce stress in college students.
ContributorsGlissmann, Christine (Author) / Huberty, Jennifer (Thesis advisor) / Sebren, Ann (Committee member) / Larkey, Linda (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2018
154031-Thumbnail Image.png
Description
Background: Although childhood engagement in physical activity has received growing attention, most children still do not meet the recommended daily 60 minutes of moderate to vigorous physical activity [MVPA]. Children of ethnic minorities are less likely to meet the guidelines. Interventions have been implemented in various settings to increase child

Background: Although childhood engagement in physical activity has received growing attention, most children still do not meet the recommended daily 60 minutes of moderate to vigorous physical activity [MVPA]. Children of ethnic minorities are less likely to meet the guidelines. Interventions have been implemented in various settings to increase child physical activity levels, yet these efforts have not yielded consistent results. The purpose of this study was to assess the preliminary effects of a community-based intervention on light physical activity and MVPA among 6-11 year old children. Methods: The present study was part of a larger study called Athletes for Life [AFL], a family-based, nutrition-education and physical activity intervention. The present study focused on physical activity data from the first completed cohort of participants (n=29). This study was a randomized control trial in which participating children were randomized into a control (n=14) or intervention (n=15) group. Participants wore accelerometers at two time points. Intervention strategies were incorporated to increase child habitual physical activity. Analyses of covariance were performed to test for post 12-week differences between both groups on the average minutes of light physical activity and MVPA minutes per day.

Results: The accelerometer data demonstrated no significant difference in light physical activity or MVPA mean minutes per day between the groups. Few children reported engaging in activities sufficient for meeting the physical activity guidelines outside the AFL program. Of the 119 total distributed child physical activity tracker sheets (7 per family), 55 were returned. Of the 55 returned physical activity tracker sheets, parents reported engaging in physical activity with their children only 7 times outside of the program over seven weeks.

Conclusion: The combined intervention strategies implemented throughout the 12-week study did not appear to be effective at increasing habitual mean minutes per day spent engaging in light and MVPA among children beyond the directed program. Methodological limitations and low adherence to intervention strategies may partially explain these findings. Further research is needed to test successful strategies within community programs to increase habitual light physical activity and MVPA among 6-11 year old children.
ContributorsQuezada, Blanca (Author) / Crespo, Noe (Thesis advisor) / Huberty, Jennifer (Committee member) / Vega-Lopez, Sonia (Committee member) / Arizona State University (Publisher)
Created2015
155013-Thumbnail Image.png
Description
Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs

Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs may contribute to behavioral modifications. Heavy metals and metalloids are persistent environmental pollutants and induce neurological deficits in multiple organisms. However, in the honey bee, an important insect pollinator, little is known about the sublethal effects of heavy metal and metalloid toxicity though they are exposed to these toxins chronically in some environments. In this thesis I investigate the sublethal effects of copper, cadmium, lead, and selenium on honey bee behavior and identify potential mechanisms mediating the behavioral modifications. I explore the honey bees’ ability to detect these toxins, their sensory perception of sucrose following toxin exposure, and the effects of toxin ingestion on performance during learning and memory tasks. The effects depend on the specific metal. Honey bees detect and reject copper containing solutions, but readily consume those contaminated with cadmium and lead. And, exposure to lead may alter the sensory perception of sucrose. I also demonstrate that acute selenium exposure impairs learning and long-term memory formation or recall. Localizing selenium accumulation following chronic exposure reveals that damage to non-neural organs and peripheral sensory structures is more likely than direct neurotoxicity. Probable mechanisms include gut microbiome alterations, gut lining

damage, immune system activation, impaired protein function, or aberrant DNA methylation. In the case of DNA methylation, I demonstrate that inhibiting DNA methylation dynamics can impair long-term memory formation, while the nurse-to- forager transition is not altered. These experiments could serve as the bases for and reference groups of studies testing the effects of metal or metalloid toxicity on DNA methylation. Each potential mechanism provides an avenue for investigating how neural function is influenced by the physiological status of non-neural organs. And from an ecological perspective, my results highlight the need for environmental policy to consider sublethal effects in determining safe environmental toxin loads for honey bees and other insect pollinators.
ContributorsBurden, Christina Marie (Author) / Amdam, Gro (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Gallitano-Mendel, Amelia (Committee member) / Harrison, Jon (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2016