Matching Items (859)
Filtering by

Clear all filters

151393-Thumbnail Image.png
Description
DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to

DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to 2,6-DBP and 2,6-DCP exposures were also investigated. DehaloR^2 did not dechlorinate TCC or TCEP. After initial exposure to TCA, half of the initial TCA was dechlorinated to 1,1-dichloroethane (DCA), however half of the TCA remained by day 100. Subsequent TCA and TCE re-exposure showed no reductive dechlorination activity for both TCA and TCE by 120 days after the re-exposure. It has been hypothesized that the microbial TCE-dechlorinating ability was developed before TCE became abundant in groundwater. This dechlorinating ability would have existed in the microbial metabolism due to previous exposure to biogenic halogenated compounds. After observing the inability of DehaloR^2 to dechlorinate other anthropogenic compounds, DehaloR^2 was then exposed to two naturally occurring halogenated phenols, 2,6-DBP and 2,6-DCP, in the presence and absence of TCE. DehaloR^2 debrominated 2,6-DBP through the intermediate 2-bromophenol (2-BP) to the end product phenol faster in the presence of TCE. DehaloR^2 dechlorinated 2,6-DCP to 2-CP in the absence of TCE; however, 2,6-DCP dechlorination was incomplete in the presence of TCE. Additionally, when 2,6-DBP was present, complete TCE dechlorination to ethene occurred more quickly than when TCE was present without 2,6-DBP. However, when 2,6-DCP was present, TCE dechlorination to ethene had not completed by day 55. The increased dehalogenation rate of 2,6-DBP and TCE when present together compared to conditions containing only 2,6-DBP or only TCE suggests a possible synergistic relationship between 2,6-DBP and TCE, while the decreased dechlorination rate of 2,6-DCP and TCE when present together compared to conditions containing only 2,6-DCP or only TCE suggests an inhibitory effect.
ContributorsKegerreis, Kylie (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Halden, Rolf U. (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2012
152004-Thumbnail Image.png
Description
To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their

To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their microbiology and electrochemistry, much is still unknown about the mechanism of electron transfer to the anode. To this end, this thesis seeks to elucidate the complexities of electron transfer existing in Geobacter sulfurreducens biofilms by employing Electrochemical Impedance Spectroscopy (EIS) as the tool of choice. Experiments measuring EIS resistances as a function of growth were used to uncover the potential gradients that emerge in biofilms as they grow and become thicker. While a better understanding of this model ARB is sought, electrochemical characterization of a halophile, Geoalkalibacter subterraneus (Glk. subterraneus), revealed that this organism can function as an ARB and produce seemingly high current densities while consuming different organic substrates, including acetate, butyrate, and glycerol. The importance of identifying and studying novel ARB for broader MXC applications was stressed in this thesis as a potential avenue for tackling some of human energy problems.
ContributorsAjulo, Oluyomi (Author) / Torres, Cesar (Thesis advisor) / Nielsen, David (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Popat, Sudeep (Committee member) / Arizona State University (Publisher)
Created2013
151495-Thumbnail Image.png
Description
Background. Research suggests that non-O blood types are at an increased risk of thrombosis and related health complications in cardiovascular disease (CVD). This is due in part to higher concentrations of von Willebrand factor (VWF), an important factor involved in blood clotting. Objective. The purpose of this study was to

Background. Research suggests that non-O blood types are at an increased risk of thrombosis and related health complications in cardiovascular disease (CVD). This is due in part to higher concentrations of von Willebrand factor (VWF), an important factor involved in blood clotting. Objective. The purpose of this study was to examine the effects of a vegetarian-like diet on blood coagulation and other health parameters in adults with type A blood compared to type O blood over a four week intervention. Given the lack of previous research on blood type and diet, it was hypothesized that no difference in blood coagulation would be observed. Design. This study was a randomized, parallel arm, dietary intervention using healthy, omnivorous adults with blood types A and O. A total of 39 subjects completed the study. Subjects were randomized into two groups: a vegetarian-like diet group made up of 12 type As and 12 type Os and an omnivorous control diet group made up of 11 type As and 12 type Os. At weeks 0 and 4, fasting blood was drawn and analyzed for prothrombin time (PT), activated partial thromboplastin time (APTT), von Willebrand factor (VWF), total cholesterol, LDL, HDL, triglycerides, and CRP. In addition, subjects were weighed and filled out a FFQ at weeks 0 and 4. Results. After adhering to a vegetarian-like diet for four weeks, type Os had a significant increase in PT (+0.24±0.32 sec/ p=0.050), whereas type As saw no significant change. There was a trend of weight loss for type Os in the vegetarian-like diet group (-1.8±2.6 lb/ p=0.092) and significant weight loss for type As (-0.9±2.1 lb/ p=0.037). Both blood types O and A experienced significant decreases in BMI (-0.3±0.4/ p=0.092 and -0.2±0.3/ p=0.037, respectively). No change was seen in APTT, VWF, total cholesterol, LDL, HDL, triglycerides, or CRP. Conclusion. Type Os saw an increase in PT, perhaps indicating a reduction in risk of thrombosis and its related health complications. Type As were less responsive to the dietary intervention and may require more rigid dietary guidelines or a longer time on such a diet to see the benefits.
ContributorsBrown, Jennifer (Author) / Johnston, Carol (Thesis advisor) / Martin, Keith (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2013
152099-Thumbnail Image.png
Description
The body is capable of regulating hunger in several ways. Some of these hunger regulation methods are innate, such as genetics, and some, such as the responses to stress and to the smell of food, are innate but can be affected by body conditions such as BMI and physical activity.

The body is capable of regulating hunger in several ways. Some of these hunger regulation methods are innate, such as genetics, and some, such as the responses to stress and to the smell of food, are innate but can be affected by body conditions such as BMI and physical activity. Further, some hunger regulation methods stem from learned behaviors originating from cultural pressures or parenting styles. These latter regulation methods for hunger can be grouped into the categories: emotion, environment, and physical. The factors that regulate hunger can also influence the incidence of disordered eating, such as eating in the absence of hunger (EAH). Eating in the absence of hunger can occur in one of two scenarios, continuous EAH or beginning EAH. College students are at a particularly high risk for EAH and weight gain due to stress, social pressures, and the constant availability of energy dense and nutrient poor food options. The purpose of this study is to validate a modified EAH-C survey in college students and to discover which of the three latent factors (emotion, environment, physical) best predicts continual and beginning EAH. To do so, a modified EAH-C survey, with additional demographic components, was administered to students at a major southwest university. This survey contained two questions, one each for continuing and beginning EAH, regarding 14 factors related to emotional, physical, or environmental reasons that may trigger EAH. The results from this study revealed that the continual and beginning EAH surveys displayed good internal consistency reliability. We found that for beginning and continuing EAH, although emotion is the strongest predictor of EAH, all three latent factors are significant predictors of EAH. In addition, we found that environmental factors had the greatest influence on an individual's likelihood to continue to eat in the absence of hunger. Due to statistical abnormalities and differing numbers of factors in each category, we were unable to determine which of the three factors exerted the greatest influence on an individual's likelihood to begin eating in the absence of hunger. These results can be utilized to develop educational tools aimed at reducing EAH in college students, and ultimately reducing the likelihood for unhealthy weight gain and health complications related to obesity.
ContributorsGoett, Taylor (Author) / Johnston, Carol (Thesis advisor) / Lee, Chong (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2013
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
151669-Thumbnail Image.png
Description
In situ remediation of contaminated aquifers, specifically in situ bioremediation (ISB), has gained popularity over pump-and-treat operations. It represents a more sustainable approach that can also achieve complete mineralization of contaminants in the subsurface. However, the subsurface reality is very complex, characterized by hydrodynamic groundwater movement, geological heterogeneity, and mass-transfer

In situ remediation of contaminated aquifers, specifically in situ bioremediation (ISB), has gained popularity over pump-and-treat operations. It represents a more sustainable approach that can also achieve complete mineralization of contaminants in the subsurface. However, the subsurface reality is very complex, characterized by hydrodynamic groundwater movement, geological heterogeneity, and mass-transfer phenomena governing contaminant transport and bioavailability. These phenomena cannot be properly studied using commonly conducted laboratory batch microcosms lacking realistic representation of the processes named above. Instead, relevant processes are better understood by using flow-through systems (sediment columns). However, flow-through column studies are typically conducted without replicates. Due to additional sources of variability (e.g., flow rate variation between columns and over time), column studies are expected to be less reproducible than simple batch microcosms. This was assessed through a comprehensive statistical analysis of results from multiple batch and column studies. Anaerobic microbial biotransformations of trichloroethene and of perchlorate were chosen as case studies. Results revealed that no statistically significant differences were found between reproducibility of batch and column studies. It has further been recognized that laboratory studies cannot accurately reproduce many phenomena encountered in the field. To overcome this limitation, a down-hole diagnostic device (in situ microcosm array - ISMA) was developed, that enables the autonomous operation of replicate flow-through sediment columns in a realistic aquifer setting. Computer-aided design (CAD), rapid prototyping, and computer numerical control (CNC) machining were used to create a tubular device enabling practitioners to conduct conventional sediment column studies in situ. A case study where two remediation strategies, monitored natural attenuation and bioaugmentation with concomitant biostimulation, were evaluated in the laboratory and in situ at a perchlorate-contaminated site. Findings demonstrate the feasibility of evaluating anaerobic bioremediation in a moderately aerobic aquifer. They further highlight the possibility of mimicking in situ remediation strategies on the small-scale in situ. The ISMA is the first device offering autonomous in situ operation of conventional flow-through sediment microcosms and producing statistically significant data through the use of multiple replicates. With its sustainable approach to treatability testing and data gathering, the ISMA represents a versatile addition to the toolbox of scientists and engineers.
ContributorsMcClellan, Kristin (Author) / Halden, Rolf U. (Thesis advisor) / Johnson, Paul C (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
152037-Thumbnail Image.png
Description
Obesity is currently a prevalent health concern in the United States. Essential to combating it are accurate methods of assessing individual dietary intake under ad libitum conditions. The acoustical monitoring system (AMS), consisting of a throat microphone and jaw strain sensor, has been proposed as a non-invasive method for tracking

Obesity is currently a prevalent health concern in the United States. Essential to combating it are accurate methods of assessing individual dietary intake under ad libitum conditions. The acoustical monitoring system (AMS), consisting of a throat microphone and jaw strain sensor, has been proposed as a non-invasive method for tracking free-living eating events. This study assessed the accuracy of eating events tracked by the AMS, compared to the validated vending machine system used by the NIDDK in Phoenix. Application of AMS data toward estimation of mass and calories consumed was also considered. In this study, 10 participants wore the AMS in a clinical setting for 24 hours while all food intake was recorded by the vending machine. Results indicated a correlation of 0.76 between number of eating events by the AMS and the vending machine (p = 0.019). A dependent T-test yielded a p-value of 0.799, illustrating a lack of significant difference between these methods of tracking intake. Finally, number of seconds identified as eating by the AMS had a 0.91 correlation with mass of intake (p = 0.001) and a 0.70 correlation with calories of intake (p = 0.034). These results indicate that the AMS is a valid method of objectively recording eating events under ad libitum conditions. Additional research is required to validate this device under free-living conditions.
ContributorsSteinke, Amanda (Author) / Johnston, Carol (Thesis advisor) / Votruba, Susanne (Committee member) / Hall, Richard (Committee member) / Arizona State University (Publisher)
Created2013
152435-Thumbnail Image.png
Description
ABSTRACT Vitamin C plays an important role in fatty acid metabolism because it is required for carnitine synthesis. Vitamin C has been shown to have an inverse relationship with weight and body fat percent in a number of studies. However, there has been limited research exploring the relationship between vitamin

ABSTRACT Vitamin C plays an important role in fatty acid metabolism because it is required for carnitine synthesis. Vitamin C has been shown to have an inverse relationship with weight and body fat percent in a number of studies. However, there has been limited research exploring the relationship between vitamin C status and fat oxidation. This cross-sectional study investigates the relationship between plasma vitamin C and fat oxidation in 69 participants and between plasma vitamin C and body fatness in 82 participants. Participants were measured for substrate utilization via indirect calorimetry while at rest and measured for body fatness via DEXA scan. Participants provided a single fasting blood draw for analysis of plasma vitamin C. Results did not show a significant association between vitamin C and fat oxidation while at rest, therefore the data do not support the hypothesis that vitamin C status affects fat oxidation in a resting state. However, a significant inverse association was found between vitamin C and both total body fat percent and visceral fat.
ContributorsObermeyer, Lindsay (Author) / Johnston, Carol (Thesis advisor) / Hall, Rick (Committee member) / Swan, Pamela (Committee member) / Arizona State University (Publisher)
Created2014
152438-Thumbnail Image.png
Description
Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized

Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized pollutants that act as electron acceptors, and they grow as a biofilm on the outer surface of gas-transfer membranes that deliver the electron donor (hydrogen gas, (H2). The overarching objective of my research was to achieve a comprehensive understanding of ecological interactions among key microbial members in the MBfR when treating polluted water with NO3− and ClO4− in the presence of SO42−. First, I characterized competition and co-existence between denitrifying bacteria (DB) and sulfate-reducing bacteria (SRB) when the loading of either the electron donor or electron acceptor was varied. Then, I assessed the microbial community structure of biofilms mostly populated by DB and SRB, linking structure with function based on the electron-donor bioavailability and electron-acceptor loading. Next, I introduced ClO4− as a second oxidized contaminant and discovered that SRB harm the performance of perchlorate-reducing bacteria (PRB) when the aim is complete ClO4− destruction from a highly contaminated groundwater. SRB competed too successfully for H2 and space in the biofilm, forcing the PRB to unfavorable zones in the biofilm. To better control SRB, I tested a two-stage MBfR for total ClO4− removal from a groundwater highly contaminated with ClO4−. I document successful remediation of ClO4− after controlling SO4 2− reduction by restricting electron-donor availability and increasing the acceptor loading to the second stage reactor. Finally, I evaluated the performance of a two-stage pilot MBfR treating water polluted with NO3− and ClO4−, and I provided a holistic understanding of the microbial community structure and diversity. In summary, the microbial community structure in the MBfR contributes to and can be used to explain/predict successful or failed water bioremediation. Based on this understanding, I developed means to manage the microbial community to achieve desired water-decontamination results. This research shows the benefits of looking "inside the box" for "improving the box".
ContributorsOntiveros-Valencia, Aura (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Torres, Cesar I. (Committee member) / Arizona State University (Publisher)
Created2014
152443-Thumbnail Image.png
Description
Dietary counseling from a registered dietitian has been shown in previous studies to aid in weight loss for those receiving counseling. With the increasing use of smartphone diet/weight loss applications (app), this study sought to investigate if an iPhone diet app providing feedback from a registered dietitian improved weight loss

Dietary counseling from a registered dietitian has been shown in previous studies to aid in weight loss for those receiving counseling. With the increasing use of smartphone diet/weight loss applications (app), this study sought to investigate if an iPhone diet app providing feedback from a registered dietitian improved weight loss and bio-markers of health. Twenty-four healthy adults who owned iPhones (BMI > 24 kg/m2) completed this trial. Participants were randomly assigned to one of three app groups: the MyDietitian app with daily feedback from a registered dietitian (n=7), the MyDietitian app without feedback (n=7), and the MyPlate feedback control app (n=10). Participants used their respective diet apps daily for 8-weeks while their weight loss, adherence to self-monitoring, blood bio-markers of health, and physical activity were monitored. All of the groups had a significant reduction in waist and hip circumference (p<0.001), a reduction in A1c (p=0.002), an increase in HDL cholesterol levels (p=0.012), and a reduction in calories consumed (p=0.022) over the duration of the trial. Adherence to diet monitoring via the apps did not differ between groups during the study. Body weight did not change during the study for any groups. However, when the participants were divided into low (<50% of days) or high adherence (>50% of days) groups, irrespective of study group, the high adherence group had a significant reduction in weight when compared to the low adherence group (p=0.046). These data suggest that diet apps may be useful tools for self-monitoring and even weight loss, but that the value appears to be the self-monitoring process and not the app specifically.
ContributorsThompson-Felty, Claudia (Author) / Johnston, Carol (Thesis advisor) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Levinson, Simin (Committee member) / Arizona State University (Publisher)
Created2014