Matching Items (97)
160701-Thumbnail Image.png
Description

Insects are able to navigate their environments because they can detect hydrocarbons and volatile odors, but it is not clear which one has the fastest reaction when detected, or how much of a response can be produced due to either one. In order to determine which category of odorant is

Insects are able to navigate their environments because they can detect hydrocarbons and volatile odors, but it is not clear which one has the fastest reaction when detected, or how much of a response can be produced due to either one. In order to determine which category of odorant is detected first as well as which one causes the highest response rate, data on electrophysiological responses from ants was analyzed. While the statistical tests can be done to understand and answer the questions raised by the study, there are various hydrocarbons and volatile odors that were not used in the data. Conclusive evidence only applies to the odorants used in the experiments.

ContributorsDarden, Jaelyn (Author) / Gerkin, Richard (Thesis director) / Liebig, Juergen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
Description
The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study

The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study aims to assess the current state of research and identify trends that may guide future investigations. Following the guidelines established by PRISMA, a total sample of 26 research papers were extracted from the electronic databases, PubMed and Scopus. These papers were categorized based on their publication dates, and research questions were formulated regarding three main topics: venom type, cancer-targeting mechanism, and cancer type. Statistical analysis of the research questions was performed using 2x2 contingency tables for a chi-square test. The results of the analysis reveal a statistically significant increase in publications focused on cell death mechanisms and breast cancer in recent years. This increase in publications reflects a growing interest in the potential for venom to induce apoptosis in cancer cells and target the unique biological properties of breast cancer. Overall, this meta-analysis offers insight into the evolving sphere of venom-based cancer research, providing a glimpse into the potential trajectory of this field.
ContributorsHolder, Marina (Author) / Amdam, Gro (Thesis director) / Mana, Miyeko (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2023-12
Description

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate physiology, behavior, and gene expression in the female worker caste. The pheromone acts as a signal of queen presence that suppresses worker reproduction. In the absence of reproduction, young workers focus on taking care of the queen and larvae, known as nurse tasks, while older workers forage. In nurse bees, QMP has fundamental physiological impacts, including increasing abdominal lipid stores and increasing the protein content of hypopharyngeal glands (HPG). The HPG are worker-specific glands that can synthesize royal jelly used in colony nourishment. In workers, larger HPG signifies the ability to secrete royal jelly, while shrunken glands are characteristic of foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the underlying mechanism is unclear: Does the pheromone simply make workers consume more pollen which provides lipids and protein, or does QMP also increase lipogenesis? In this study, I measured abdominal lipogenesis as fatty acid synthase (FAS) activity and monitored abdominal protein content and HPG size in caged, nurse-aged worker bees. In cages, workers were exposed to QMP or not, and they were provided with a lipid less diet in a full factorial design experiment. I found that QMP did not influence abdominal FAS activity or protein, but significantly increased HPG size. The data also revealed a significant positive correlation between abdominal protein and HPG size. My results do not support the idea that QMP modulates lipogenesis in worker bees, but my data can be interpreted to reflect that QMP mobilizes abdominal protein for the production of jelly in the HPG. This finding is in line with a previous study revealing a role of honey bee Brood Pheromone in mobilization of a major protein used in jelly production. Overall, my results support a fundamental role of QMP in worker metabolic processes associated with colony nourishment.

ContributorsOreshkova, Angela (Author) / Amdam, Gro (Thesis director) / Scofield, Sebastian (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

Although social hierarchies are commonly found all throughout nature, the underlying mechanisms of their formation are still ambiguous. Hierarchies form through a wide range of interactions between subordinate and dominant individuals, and the ponerine ant Harpegnathos saltator provides the perfect model to explore such dominance behaviors. When the queen is

Although social hierarchies are commonly found all throughout nature, the underlying mechanisms of their formation are still ambiguous. Hierarchies form through a wide range of interactions between subordinate and dominant individuals, and the ponerine ant Harpegnathos saltator provides the perfect model to explore such dominance behaviors. When the queen is absent or her fecundity levels drop below a certain threshold, H. saltator workers undergo a dominance tournament, in which several individuals emerge as gamergates, reproductive workers that are not queens. During this tournament, several characterizable dominance behaviors are exhibited (antennal dueling, dominance biting, and policing), which can be used to study the behavioral and social dynamics in the formation of a reproductive hierarchy. Colonies of 15, 30, 60, and 120 workers were created in duplicate, and their dominance tournaments were recorded to study how these interactions impact gamergate establishment. Rather than studying these behaviors as isolated incidents, responses to policing behaviors (timid, neutral, or aggressive) and their duration were recorded along with the frequency of dueling. Three groups were determined: dueling future gamergates (DFG), dueling future non-gamergates (DFNG) and non-dueling individuals (ND). DFNG received many more policing attacks and the duration of these interactions lasted much longer. DFG consistently exhibited the most dueling. Timid and neutral responses were more common than aggressive responses, perhaps due to energy conversation purposes. Peaks in dueling correspond to peaks in policing, highlighting the dynamic behavioral interactions necessary for the formation of a reproductive hierarchy.

ContributorsOlivas, Victoria (Author) / Liebig, Juergen (Thesis director) / Shaffer, Zachary (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05
Description

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022.

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022. The patterns of publications on specific topics over time can tell us what is perceived as a current major cause by physicians, public leaders, researchers, and the public. A deeper dive into systemic inequality as a cause of maternal morbidity and mortality highlights it as a major contributor to these high rates, but that progress is slowly being made through the implementation of detection and prevention tactics, as well as accessible prenatal programs and care.

ContributorsRettig, Lelia (Author) / Amdam, Gro (Thesis director) / Bang, Christofer (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description
The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are

The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are very anoxia-tolerant relative to mammals, with adults able to survive 12 h of anoxia, and represent a well-suited model for studying anoxia tolerance. Drosophila live in rotting, fermenting media and a result are more likely to experience environmental hypoxia; therefore, they could be expected to be more tolerant of anoxia than adults. However, adults have the capacity to survive anoxic exposure times ~8 times longer than larvae. This dissertation focuses on understanding the mechanisms responsible for variation in survival from anoxic exposure in the genetic model organism, Drosophila melanogaster, focused in particular on effects of developmental stage (larval vs. adults) and within-population variation among individuals.

Vertebrate studies suggest that surviving anoxia requires the maintenance of ATP despite the loss of aerobic metabolism in a manner that prevents a disruption of ionic homeostasis. Instead, the abilities to maintain a hypometabolic state with low ATP and tolerate large disturbances in ionic status appear to contribute to the higher anoxia tolerance of adults. Furthermore, metabolomics experiments support this notion by showing that larvae had higher metabolic rates during the initial 30 min of anoxia and that protective metabolites were upregulated in adults but not larvae. Lastly, I investigated the genetic variation in anoxia tolerance using a genome wide association study (GWAS) to identify target genes associated with anoxia tolerance. Results from the GWAS also suggest mechanisms related to protection from ionic and oxidative stress, in addition to a protective role for immune function.
ContributorsCampbell, Jacob B (Author) / Harrison, Jon F. (Thesis advisor) / Gadau, Juergen (Committee member) / Call, Gerald B (Committee member) / Sweazea, Karen L (Committee member) / Rosenberg, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
156764-Thumbnail Image.png
Description
Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine

Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine glands, the proper development and function of these glands are vital to colony dynamics. In this thesis, I present a study of the developmental ontogeny of the exocrine glands found in the head of the honey bee. In Chapter 2, I elucidate how the larval salivary gland transitions to an adult salivary gland through apoptosis and cell growth, differentiation and migration. I also explain the development of the hypopharyngeal and the mandibular gland using apoptotic markers and cytoskeletal markers like tubulin and actin. I explain the fundamental developmental plan for the formation of the glands and show that apoptosis plays an important role in the transformation toward an adult gland.
ContributorsNath, Rachna (Author) / Gadau, Juergen (Thesis advisor) / Rawls, Alan (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2018
154953-Thumbnail Image.png
Description
Intervertebral Disc Degeneration (IVDD) is a complex phenomenon characterizing the desiccation and structural compromise of the primary joint in the human spine. The intervertebral disc (IVD) serves to connect vertebral bodies, cushion shock, and allow for flexion and extension of the vertebral column. Often presenting in the 4th or 5th

Intervertebral Disc Degeneration (IVDD) is a complex phenomenon characterizing the desiccation and structural compromise of the primary joint in the human spine. The intervertebral disc (IVD) serves to connect vertebral bodies, cushion shock, and allow for flexion and extension of the vertebral column. Often presenting in the 4th or 5th decades of life as low back pain, this disease was originally believed to be the result of natural “wear and tear” coupled with repetitive mechanical insult, and as such most studies focus on patients between 40 and 50 years of age. Research over the past two decades, however, has demonstrated that environmental factors have only a modest effect on disc degeneration, with genetic influences playing a much more substantial role. Extensive research has focused on this process, though definitive risk factors and a clear pathophysiology have proven elusive. The aim of this study was to assemble a cohort of patients exhibiting definitive signs of degeneration who were well below the average age of presentation, with minimal or no exposure to suspected environmental risk factors and to conduct a targeted genome analysis in an attempt to elucidate a common genetic component. Through whole genome sequencing and analysis, the results corroborated findings in a previous study, as well as demonstrated a potential connection and influence between mutations found in IVD structural or functional genes, and the provocation of IVDD. Though the sample size was limited in scale and age, these findings suggest that further IVDD research into the association of variants in collagen, aggrecan and the insulin-like growth factor receptor genes of young patients with an early presentation of disc degeneration and minimal exposure to suspected risk factors is merited.
ContributorsFulton, Travis (Author) / Liebig, Juergen (Thesis advisor) / Neisewander, Janet (Committee member) / Theodore, Nicholas (Committee member) / Arizona State University (Publisher)
Created2016