Matching Items (102)
161987-Thumbnail Image.png
Description
Machine learning (ML) and deep learning (DL) has become an intrinsic part of multiple fields. The ability to solve complex problems makes machine learning a panacea. In the last few years, there has been an explosion of data generation, which has greatly improvised machine learning models. But this comes with

Machine learning (ML) and deep learning (DL) has become an intrinsic part of multiple fields. The ability to solve complex problems makes machine learning a panacea. In the last few years, there has been an explosion of data generation, which has greatly improvised machine learning models. But this comes with a cost of high computation, which invariably increases power usage and cost of the hardware. In this thesis we explore applications of ML techniques, applied to two completely different fields - arts, media and theater and urban climate research using low-cost and low-powered edge devices. The multi-modal chatbot uses different machine learning techniques: natural language processing (NLP) and computer vision (CV) to understand inputs of the user and accordingly perform in the play and interact with the audience. This system is also equipped with other interactive hardware setups like movable LED systems, together they provide an experiential theatrical play tailored to each user. I will discuss how I used edge devices to achieve this AI system which has created a new genre in theatrical play. I will then discuss MaRTiny, which is an AI-based bio-meteorological system that calculates mean radiant temperature (MRT), which is an important parameter for urban climate research. It is also equipped with a vision system that performs different machine learning tasks like pedestrian and shade detection. The entire system costs around $200 which can potentially replace the existing setup worth $20,000. I will further discuss how I overcame the inaccuracies in MRT value caused by the system, using machine learning methods. These projects although belonging to two very different fields, are implemented using edge devices and use similar ML techniques. In this thesis I will detail out different techniques that are shared between these two projects and how they can be used in several other applications using edge devices.
ContributorsKulkarni, Karthik Kashinath (Author) / Jayasuriya, Suren (Thesis advisor) / Middel, Ariane (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2021
164939-Thumbnail Image.png
Description

Heart disease is the leading cause of death in the developed world and often occurs following myocardial infarction. Apelin is an endogenous prepropeptide that has been studied for its role in improving cardiac contractility and vasodilation but suffers from a short half-life in the body. By encasing apelin in a

Heart disease is the leading cause of death in the developed world and often occurs following myocardial infarction. Apelin is an endogenous prepropeptide that has been studied for its role in improving cardiac contractility and vasodilation but suffers from a short half-life in the body. By encasing apelin in a nanoparticle patch, we were able to slowly release apelin to cardiac tissue and observe its effects for one month following induced myocardial infarction surgery in mice. This study demonstrates that the apelin nanoparticles can protect the heart from myocardial-induced heart failure, observing overall improved cardiac function and reduction of fibrotic scarring associated with post-myocardial infarction compared to a nontreated group.

ContributorsHenderson, Adam (Author) / Chen, Qiang (Thesis director) / Zhu, Wuqiang (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
Description
Weight stigma is present in many aspects of society, and especially in medicine. Weight stigma has detrimental effects on individuals physical and mental health, as well as patient-physician interactions. Application of weight-neutral healthcare ideologies such as Health at Every Size (HAES) are promising ways of decreasing weight stigma within the

Weight stigma is present in many aspects of society, and especially in medicine. Weight stigma has detrimental effects on individuals physical and mental health, as well as patient-physician interactions. Application of weight-neutral healthcare ideologies such as Health at Every Size (HAES) are promising ways of decreasing weight stigma within the medical field without reducing the focus on improving patient health. Most widely applicable interventions include changing the focus of interactions from weight to health-promoting behaviors and lab values, improving provider education, and improving the general population's awareness of the problem.
ContributorsBrouhard, Mya (Author) / Chen, Qiang (Thesis director) / Parker, Lynn (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2024-05
Description

Platelet Rich Plasma (PRP) is an emerging procedure in regenerative medicine that offers a non-surgical minimally invasive way for tissue repair and regeneration. PRP has many different bioactive molecules that are able to influence and help achieve greater recovery and regenerative outcomes. Diet has many effects on platelets and looking

Platelet Rich Plasma (PRP) is an emerging procedure in regenerative medicine that offers a non-surgical minimally invasive way for tissue repair and regeneration. PRP has many different bioactive molecules that are able to influence and help achieve greater recovery and regenerative outcomes. Diet has many effects on platelets and looking at the mechanism in which platelet function and aggregation are affected with different diets shows how they are able to affect PRP therapy. Looking at these mechanisms allows for better physician recommendations for preprocedural diets to optimize efficacy. This paper conducts a systematic review to investigate the influence that diet can have on PRP outcomes. It was shown that high fat diets lower the efficacy of treatment while the Mediterranean diet helps promote platelet function and help efficacy. The future is to look at more diets while also integrating lifestyle choice before treatment for optimal outcomes.

ContributorsLaguna, Sebastian (Author) / Chen, Qiang (Thesis director) / Goyle, Ashu (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2024-05
187639-Thumbnail Image.png
Description
Cities globally are experiencing substantial warming due to ongoing urbanization and climate change. However, existing efforts to mitigate urban heat focus mainly on new technologies, exacerbate social injustices, and ignore the need for a sustainability lens that considers environmental, social, and economic perspectives. Heat in urban areas is amplified and

Cities globally are experiencing substantial warming due to ongoing urbanization and climate change. However, existing efforts to mitigate urban heat focus mainly on new technologies, exacerbate social injustices, and ignore the need for a sustainability lens that considers environmental, social, and economic perspectives. Heat in urban areas is amplified and urgently needs to be considered as a critical sustainability issue that crosses disciplinary and sectoral (traditional) boundaries. The missing urgency is concerning because urban overheating is a multi-faceted threat to the well-being and performance of individuals as well as the energy efficiency and economy of cities. Urban heat consequences require transformation in ways of thinking by involving the best available knowledge engaging scientists, policymakers, and communities. To do so, effective heat mitigation planning requires a considerable amount of diverse knowledge sources, yet urban planners face multiple barriers to effective heat mitigation, including a lack of usable, policy-relevant science and governance structures. To address these issues, transdisciplinary approaches, such as co-production via partnerships and the creation of usable, policy-relevant science, are necessary to allow for sustainable and equitable heat mitigation that allow cities to work toward multiple Sustainable Development Goals (SDGs) using a systems approach. This dissertation presents three studies that contribute to a sustainability lens on urban heat, improve the holistic and multi-perspective understanding of heat mitigation strategies, provide contextual guidance for reflective pavement as a heat mitigation strategy, and evaluate a multilateral, sustainability-oriented, co-production partnership to foster heat resilience equitably in cities. Results show that science and city practice communicate differently about heat mitigation strategies while both avoid to communicate disservices and trade-offs. Additionally, performance evaluation of heat mitigation strategies for decision-making needs to consider multiple heat metrics, people, and background climate. Lastly, the partnership between science, city practice, and community needs to be evaluated to be accountable and provide a pathway of growth for all partners. The outcomes of this dissertation advance research and awareness of urban heat for science, practice, and community, and provide guidance to improve holistic and sustainable decision-making in cities and partnerships to address SDGs around urban heat.
ContributorsSchneider, Florian Arwed (Author) / Middel, Ariane (Thesis advisor) / Vanos, Jennifer K (Committee member) / Withycombe Keeler, Lauren (Committee member) / Arizona State University (Publisher)
Created2023
187355-Thumbnail Image.png
Description
Extreme heat and its human impacts are significant public health challenges that disproportionately affect certain populations. Often, people with the least resources to cope with the heat also live in the hottest regions of cities. Previous heat vulnerability research has predominantly been conducted at a coarse geographic scale, yet translating

Extreme heat and its human impacts are significant public health challenges that disproportionately affect certain populations. Often, people with the least resources to cope with the heat also live in the hottest regions of cities. Previous heat vulnerability research has predominantly been conducted at a coarse geographic scale, yet translating relationships measured at aggregated scales to the individual level can result in ecological fallacy. Prior work has also primarily studied the most severe health outcomes: hospitalization/emergency care and mortality. It is likely that magnitudes more people are experiencing negative health impacts from heat that do not necessarily result in medical care. Such less severe impacts are under-researched in the literature.This dissertation addresses these knowledge gaps by identifying how social characteristics and physical measurements of heat at the individual and household level act independently and in concert to influence human heat-related outcomes, especially less severe outcomes. In the first paper, meta-analysis was used to quantify the summary effects of vulnerability indicators on incidence of heat-related illness. More proximal vulnerability indicators (e.g., residential air conditioning use, indoor heat exposure, etc.) tended to have the strongest impact on odds of experiencing heat-related illness than more distal indicators. In the next paper, indoor air temperature observations were related to the social characteristics of the residents. The strongest predictor of indoor air temperature was the residents’ ideal thermally comfortable temperature, despite affordability. In the final paper, fine scale biometeorological observations of the outdoor thermal environment near residents’ homes were linked to their experience with heat-related illness. The outdoor thermal environment appeared to have a stronger, more consistent impact on heat-related illness among households in a lower income neighborhood compared to a higher income one. These findings affirm the value of employing residential heat mitigation solutions at the individual and household scale, indoors and outdoors. Across all chapters, the indoor thermal environment, and the ability to modify it, had a clear impact on residents’ comfort and health. Solutions that target the most proximal causal factors of heat-related illness will likely have the greatest impact on reducing the burden of heat on human health and well-being.
ContributorsWright, Mary K (Author) / Hondula, David M (Thesis advisor) / Larson, Kelli L (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2023
187656-Thumbnail Image.png
Description
Coccidioidomycosis, or valley fever (VF), is a fungal infection caused by Coccidioides that is highly endemic in southern Arizona and central California. The antibody response to infection in combination with clinical presentation and radiographic findings are often used to diagnose disease, as a highly sensitive and specific antigen-based assay has

Coccidioidomycosis, or valley fever (VF), is a fungal infection caused by Coccidioides that is highly endemic in southern Arizona and central California. The antibody response to infection in combination with clinical presentation and radiographic findings are often used to diagnose disease, as a highly sensitive and specific antigen-based assay has yet to be developed and commercialized. In this dissertation, a panel of monoclonal antibodies (mAbs) was generated in an attempt to identify circulating antigen in VF-positive patients. Despite utilizing a mixture of antigens, almost all mAbs obtained were against chitinase 1 (CTS1), a protein previously identified as a main component in serodiagnostic reagents. While CTS1 was undoubtedly a dominant seroreactive antigen, it was not successfully detected in circulation in patient samples prompting a shift toward further understanding the importance of CTS1 in antibody-based diagnostic assays. Interestingly, depletion of this antigen from diagnostic antigen preparations resulted in complete loss of patient IgG reactivity by immunodiffusion. This finding encouraged the development of a rapid, 10-minute point-of-care test in lateral flow assay (LFA) format to exclusively detect anti-CTS1 antibodies from human and non-human animal patients with coccidioidal infection. A CTS1 LFA was developed that demonstrated 92.9% sensitivity and 97.7% specificity when compared to current quantitative serologic assays (complement fixation and immunodiffusion). A commercially available LFA that utilizes a proprietary mixture of antigens was shown to be less sensitive (64.3%) and less specific (79.1%). This result provides evidence that a single antigen can be used to detect antibodies consistently and accurately from patients with VF. The LFA presented here shows promise as a helpful tool to rule-in or rule-out a diagnosis of VF such that patients may avoid unnecessary antibacterial treatments, improving healthcare efficiency.
ContributorsGrill, Francisca J (Author) / Lake, Douglas F (Thesis advisor) / Magee, D Mitch (Committee member) / Grys, Thomas (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2023
166652-Thumbnail Image.png
Description
Adaptive capacity to climate change is the ability of a system to mitigate or take advantage of climate change effects. Research on adaptive capacity to climate change suffers fragmentation. This is partly because there is no clear consensus around precise definitions of adaptive capacity. The aim of this thesis is

Adaptive capacity to climate change is the ability of a system to mitigate or take advantage of climate change effects. Research on adaptive capacity to climate change suffers fragmentation. This is partly because there is no clear consensus around precise definitions of adaptive capacity. The aim of this thesis is to place definitions of adaptive capacity into a formal framework. I formalize adaptive capacity as a computational model written in the Idris 2 programming language. The model uses types to constrain how the elements of the model fit together. To achieve this, I analyze nine existing definitions of adaptive capacity. The focus of the analysis was on important factors that affect definitions and shared elements of the definitions. The model is able to describe an adaptive capacity study and guide a user toward concepts lacking clarity in the study. This shows that the model is useful as a tool to think about adaptive capacity. In the future, one could refine the model by forming an ontology for adaptive capacity. One could also review the literature more systematically. Finally, one might consider turning to qualitative research methods for reviewing the literature.
ContributorsManuel, Jason (Author) / Bazzi, Rida (Thesis director) / Pavlic, Theodore (Committee member) / Middel, Ariane (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

With the increase in the severity of drought conditions in the Southwest region of the U.S. paired with rising temperatures, it is becoming increasingly important to look at the systems used to keep people cool in hot-arid cities like Tempe, Arizona. Outdoor misting systems are often deployed by businesses. These

With the increase in the severity of drought conditions in the Southwest region of the U.S. paired with rising temperatures, it is becoming increasingly important to look at the systems used to keep people cool in hot-arid cities like Tempe, Arizona. Outdoor misting systems are often deployed by businesses. These systems rely on the evaporative cooling effect of water. This study examines the relationship between misting droplet size, water usage, and thermal comfort using low-pressure misting systems, tested within hot and dry conditions representative of the arid U.S. southwest. A model misting system using three nozzle orifice sizes was set up in a controlled heat chamber environment (starting baseline conditions of 40°C air temperature and 15 % relative humidity). Droplet size was measured using water-reactive paper, while water use was determined based on weight-change measurements. These measurements were paired with temperature and humidity measurements observed in several locations around the chamber to allow for a spatial analysis. Thermal comfort is determined based on psychrometric changes (temperature and absolute humidity) within the room. On average, air temperatures decreased between 2 to 4°C depending on nozzle size and sensor location. The 0.4 mm nozzle had a decent spread across the heat chamber and balanced water usage and effectiveness well. Limitations within the study showed ventilation is important for an effective system, corroborating other studies findings and suggesting that adding air circulation could improve evaporation and comfort and thus effectiveness. Finally, visual cues, such as wetted surfaces, can signal businesses to change nozzle sizes and/or make additional modifications to the system area.

ContributorsJohnson, Trevor (Author) / Vanos, Jennifer (Thesis director) / Middel, Ariane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022.

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022. The patterns of publications on specific topics over time can tell us what is perceived as a current major cause by physicians, public leaders, researchers, and the public. A deeper dive into systemic inequality as a cause of maternal morbidity and mortality highlights it as a major contributor to these high rates, but that progress is slowly being made through the implementation of detection and prevention tactics, as well as accessible prenatal programs and care.

ContributorsRettig, Lelia (Author) / Amdam, Gro (Thesis director) / Bang, Christofer (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2023-05