Matching Items (129)
127967-Thumbnail Image.png
Description

The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the

The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB) in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV) envelope glycoprotein domain III (EDIII), which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.

Created2017-09-25
128820-Thumbnail Image.png
Description

In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen

In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates.

ContributorsDe Souza, Daiana A. (Author) / Wang, Ying (Author) / Kaftanoglu, Osman (Author) / De Jong, David (Author) / Amdam, Gro (Author) / Goncalves, Lionel S. (Author) / Francoy, Tiago M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-20
128684-Thumbnail Image.png
Description

In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies

In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.

ContributorsBrookhouser, Nicholas (Author) / Raman, Sreedevi (Author) / Potts, Chris (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-02-06
135762-Thumbnail Image.png
Description
Currently, treatment for multiple myeloma (MM), a hematological cancer, is limited to post-symptomatic chemotherapy combined with other pharmaceuticals and steroids. Even so, the immuno-depressing cancer can continue to proliferate, leading to a median survival period of two to five years. B cells in the bone marrow are responsible for generating

Currently, treatment for multiple myeloma (MM), a hematological cancer, is limited to post-symptomatic chemotherapy combined with other pharmaceuticals and steroids. Even so, the immuno-depressing cancer can continue to proliferate, leading to a median survival period of two to five years. B cells in the bone marrow are responsible for generating antigen-specific antibodies, but in MM the B cells express mutated, non-specific monoclonal antibodies. Therefore, it is hypothesized that antibody-based assay and therapy may be feasible for detecting and treating the disease. In this project, 330k peptide microarrays were used to ascertain the binding affinity of sera antibodies for MM patients with random sequence peptides; these results were then contrasted with normal donor assays to determine the "immunosignatures" for MM. From this data, high-binding peptides with target-specificity (high fluorescent intensity for one patient, low in all other patients and normal donors) were selected for two MM patients. These peptides were narrowed down to two lists of five (10 total peptides) to analyze in a synthetic antibody study. The rationale behind this originates from the idea that antibodies present specific binding sites on either of their branches, thus relating high binding peptides from the arrays to potential binding targets of the monoclonal antibodies. Furthermore, these peptides may be synthesized on a synthetic antibody scaffold with the potential to induce targeted delivery of radioactive or chemotherapeutic molecular tags to only myelomic B cells. If successful, this would provide a novel alternative to current treatments that is less invasive, has fewer side effects, more specifically targets the cause of MM, and reliably diagnoses the cancer in the presymptomatic stage.
ContributorsBerry, Jameson (Co-author) / Buelt, Allison (Co-author) / Johnston, Stephen (Thesis director) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135546-Thumbnail Image.png
Description
Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds

Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds as a delivery mechanism has been explored to improve survival and engraftment rates. Previous work with hyaluronic acid \u2014 laminin (HA-Lm) gels found high viability and engraftment rates of mouse fetal derived neural progenitor/stem cells (NPSCs) cultured on the gel. Furthermore, NPSCs exposed to the HA-Lm gels exhibit increased expression of CXCR4, a critical surface receptor that promotes cell migration. We hypothesized that culturing hNPCs on the HA-Lm gel would increase CXCR4 expression, and thus enhance their ability to migrate into sites of tissue damage. In order to test this hypothesis, we designed gel scaffolds with mechanical properties that were optimized to match that of the natural extracellular matrix. A live/dead assay showed that hNPCs preferred the gel with this optimized formulation, compared to a stiffer gel that was used in the CXCR4 expression experiment. We found that there may be increased CXCR4 expression of hNPCs plated on the HA-Lm gel after 24 hours, indicating that HA-Lm gels may provide a valuable scaffold to support viability and migration of hNPCs to the injury site. Future studies aimed at verifying increased CXCR4 expression of hNPCs cultured on HA-Lm gels are necessary to determine if HA-Lm gels can provide a beneficial scaffold for stem cell engraftment therapy for treating TBI.
ContributorsHemphill, Kathryn Elizabeth (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135547-Thumbnail Image.png
Description
The Experimental Data Processing (EDP) software is a C++ GUI-based application to streamline the process of creating a model for structural systems based on experimental data. EDP is designed to process raw data, filter the data for noise and outliers, create a fitted model to describe that data, complete a

The Experimental Data Processing (EDP) software is a C++ GUI-based application to streamline the process of creating a model for structural systems based on experimental data. EDP is designed to process raw data, filter the data for noise and outliers, create a fitted model to describe that data, complete a probabilistic analysis to describe the variation between replicates of the experimental process, and analyze reliability of a structural system based on that model. In order to help design the EDP software to perform the full analysis, the probabilistic and regression modeling aspects of this analysis have been explored. The focus has been on creating and analyzing probabilistic models for the data, adding multivariate and nonparametric fits to raw data, and developing computational techniques that allow for these methods to be properly implemented within EDP. For creating a probabilistic model of replicate data, the normal, lognormal, gamma, Weibull, and generalized exponential distributions have been explored. Goodness-of-fit tests, including the chi-squared, Anderson-Darling, and Kolmogorov-Smirnoff tests, have been used in order to analyze the effectiveness of any of these probabilistic models in describing the variation of parameters between replicates of an experimental test. An example using Young's modulus data for a Kevlar-49 Swath stress-strain test was used in order to demonstrate how this analysis is performed within EDP. In order to implement the distributions, numerical solutions for the gamma, beta, and hypergeometric functions were implemented, along with an arbitrary precision library to store numbers that exceed the maximum size of double-precision floating point digits. To create a multivariate fit, the multilinear solution was created as the simplest solution to the multivariate regression problem. This solution was then extended to solve nonlinear problems that can be linearized into multiple separable terms. These problems were solved analytically with the closed-form solution for the multilinear regression, and then by using a QR decomposition to solve numerically while avoiding numerical instabilities associated with matrix inversion. For nonparametric regression, or smoothing, the loess method was developed as a robust technique for filtering noise while maintaining the general structure of the data points. The loess solution was created by addressing concerns associated with simpler smoothing methods, including the running mean, running line, and kernel smoothing techniques, and combining the ability of each of these methods to resolve those issues. The loess smoothing method involves weighting each point in a partition of the data set, and then adding either a line or a polynomial fit within that partition. Both linear and quadratic methods were applied to a carbon fiber compression test, showing that the quadratic model was more accurate but the linear model had a shape that was more effective for analyzing the experimental data. Finally, the EDP program itself was explored to consider its current functionalities for processing data, as described by shear tests on carbon fiber data, and the future functionalities to be developed. The probabilistic and raw data processing capabilities were demonstrated within EDP, and the multivariate and loess analysis was demonstrated using R. As the functionality and relevant considerations for these methods have been developed, the immediate goal is to finish implementing and integrating these additional features into a version of EDP that performs a full streamlined structural analysis on experimental data.
ContributorsMarkov, Elan Richard (Author) / Rajan, Subramaniam (Thesis director) / Khaled, Bilal (Committee member) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Ira A. Fulton School of Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131040-Thumbnail Image.png
Description
Since its inception in the early 1990s, the concept of gene vaccines, particularly DNA vaccines, has enticed researchers across the board due to its simple design, flexible modification, and overall inexpensive cost of manufacturing. However, the past three decades have proven to be less fruitful than anticipated as scientists have

Since its inception in the early 1990s, the concept of gene vaccines, particularly DNA vaccines, has enticed researchers across the board due to its simple design, flexible modification, and overall inexpensive cost of manufacturing. However, the past three decades have proven to be less fruitful than anticipated as scientists have yet to tackle the issue of inducing a strong enough response in humans and non-human primates to protect against foreign pathogens, an issue that has since been coined as the “simian barrier.” This appears to be a human/primate barrier as protective vaccines have been produced for other mammals. Despite millions of dollars in research along with some of the world’s brightest minds chipping in to resolve this, there has yet to be any truly viable solution to overcoming this barrier. With current research illustrating effective applications of RNA vaccines in humans, these studies may be uncovering the solution to the largely unsolved simian barrier dilemma. If vaccines using RNA, the transcribed version of DNA, are effective in humans, the problem may be inefficient transcription of the DNA. This may be attributable to a DNA promoter that has insufficient activity in primates. Additionally, with DNA vaccines being even cheaper and easier to manufacture than RNA vaccines, along with having no required cold chain for distribution, this concept remains more promising than RNA vaccines that are further along in clinical trials.
ContributorsWillis, Joshua Aaron (Author) / Johnston, Stephen (Thesis director) / Sykes, Kathryn (Committee member) / Shen, Luhui (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131715-Thumbnail Image.png
Description
Current culturing methods allow for human neural progenitor cells to be differentiated into neurons for use in diagnostic tools and disease modeling. An issue arises in the relatively low number of cells that can be successfully expanded and differentiated using these current methods, making the progress of research dependent on

Current culturing methods allow for human neural progenitor cells to be differentiated into neurons for use in diagnostic tools and disease modeling. An issue arises in the relatively low number of cells that can be successfully expanded and differentiated using these current methods, making the progress of research dependent on these cultures as a large number of cells are needed to conduct relevant assays. This project focuses on the expansion and differentiation of human neural progenitor cells cultured on microcarriers and within a rotating bioreactor system as a way to increase the total number of cells generated. Additionally, cryopreservation and the characteristics of these neurons post thaw is being investigated to create a way for long term storage, as well as, a method for standardizing cell lines between multiple experiments at different time points. The experiments covered in this study are aimed to compare the characteristics of differentiated human neurons, both demented and non-demented cell lines between pre-cryopreservation, freshly differentiated neurons and post-cryopreservation neurons. The assays conducted include immunofluorescence, calcium imaging, quantitative polymerase chain reaction, flow cytometry and ELISA data looking at Alzheimer’s disease traits. With the data collected within this study, the use of bioreactors, in addition to, cryopreservation of human neurons for long term storage can be better implemented into human neural progenitor cell research. Both of these aspects will increase the output of these cultures and potentially remove the bottleneck currently found within human neural disease modeling.
ContributorsHenson, Tanner Jay (Author) / Brafman, David (Thesis director) / Kodibagkar, Vikram (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Major Depressive Disorder (MDD) is a common mental disorder that can affect individuals at nearly every stage of life. Women are especially vulnerable to MDD in part, from ovarian hormone level fluctuations. In this thesis, I focused on MDD using a rat model in middle-age to explore potential sex differences

Major Depressive Disorder (MDD) is a common mental disorder that can affect individuals at nearly every stage of life. Women are especially vulnerable to MDD in part, from ovarian hormone level fluctuations. In this thesis, I focused on MDD using a rat model in middle-age to explore potential sex differences in response to a corticosterone (CORT) – induced depressive-like state. Estradiol (E2), a naturally occurring steroid sex hormone in humans and rats, is implicated in mood changes, which is especially prominent during the menopause transition. CORT, a stress hormone, was used to create a depressive-like state in middle-aged female (F) and male (M) rats with their gonads surgically removed. This produced the following independent treatment groups: Sex (F, M), CORT (vehicle = V ml/kg, C 40mg/kg), E2 (V 0.1 ml, E 0.3µg/0.1ml). CORT and E2 injections were injected daily, s.c) for 7 days before behavioral testing began and continued throughout the study when behavior was assessed. For my honor’s thesis, I focused on the social interaction test and elevated plus maze to investigate whether CORT enhanced social avoidance and anxiety, and whether E2 mitigated the CORT effects. In the social interaction test, three new behaviors were assessed (interacting, grooming, and immobility) to better understand exploratory and anxiety profiles of the rats, and these behaviors were quantified over two 5-minute periods in the 10-minute trial. These new quantifications showed that for the female rats, C+E and V+V enhanced the interaction with the novel rat significantly more than an inanimate object, which was not observed in the females given CORT only or E2 only. The males in all conditions showed a significant preference for side with the novel rat compared to the object, however no treatment differences were observed. In both sexes, the overall time spent interacting decreased in the second five minutes of quantification compared to the first five minutes. No effects were observed with grooming or immobility, in part from the high variability across rats. For EPM, female rats treated with CORT and E2 exhibited a lower anxiety index than compared to female rats given CORT only, indicating that E2 mitigated the depressive-like effects of CORT. Males showed no CORT or E2 effects. The result in part supported my hypothesis, as the CORT-treated females exhibited reduced socialization and E2 improved socialization in CORT-treated females, as this was seen in the F-C-E group. Interestingly, CORT failed to produce a depressive-like effect in males in both behavioral tests, which was an unexpected outcome. These results suggest that administration of E2 with CORT mitigated the depressive-like state created by CORT in female rats, however failed to produce these outcomes in males. The outcome of this work will give us insight into the potential mechanisms that may contribute to sex differences with MDD.
ContributorsSladkova, Sara (Author) / Conrad, Cheryl (Thesis director) / Amdam, Gro (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2024-05