Matching Items (88)
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
Description
The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study

The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study aims to assess the current state of research and identify trends that may guide future investigations. Following the guidelines established by PRISMA, a total sample of 26 research papers were extracted from the electronic databases, PubMed and Scopus. These papers were categorized based on their publication dates, and research questions were formulated regarding three main topics: venom type, cancer-targeting mechanism, and cancer type. Statistical analysis of the research questions was performed using 2x2 contingency tables for a chi-square test. The results of the analysis reveal a statistically significant increase in publications focused on cell death mechanisms and breast cancer in recent years. This increase in publications reflects a growing interest in the potential for venom to induce apoptosis in cancer cells and target the unique biological properties of breast cancer. Overall, this meta-analysis offers insight into the evolving sphere of venom-based cancer research, providing a glimpse into the potential trajectory of this field.
ContributorsHolder, Marina (Author) / Amdam, Gro (Thesis director) / Mana, Miyeko (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2023-12
171365-Thumbnail Image.png
Description
Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically

Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically approved to treat only 10 out of the greater than 200 known pathogenic human viruses. Additionally, as obligate intracellular parasites, many virus functions are intimately coupled with host cellular processes. As such, the development of a clinically relevant antiviral is challenged by the limited number of clear targets per virus and necessitates an extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. Therefore, a means to develop virus- or strain-specific antivirals without detailed insight into each idiosyncratic biochemical mechanism may aid in the development of antivirals against a larger swath of pathogens. Such an approach will tremendously benefit from having the specific molecular recognition of viral species as the lowest barrier. Here, I modify a nanobody (anti-green fluorescent protein) that specifically recognizes non-essential epitopes (glycoprotein M-pHluorin chimera) presented on the extra virion surface of a virus (Pseudorabies virus strain 486). The nanobody switches from having no inhibitory properties (tested up to 50 μM) to ∼3 nM IC50 in in vitro infectivity assays using porcine kidney (PK15) cells. The nanobody modifications use highly reliable bioconjugation to a three-dimensional wireframe deoxyribonucleic acid (DNA) origami scaffold. Mechanistic studies suggest that inhibition is mediated by the DNA origami scaffold bound to the virus particle, which obstructs the internalization of the viruses into cells, and that inhibition is enhanced by avidity resulting from multivalent virus and scaffold interactions. The assembled nanostructures demonstrate negligible cytotoxicity (<10 nM) and sufficient stability, further supporting their therapeutic potential. If translatable to other viral species and epitopes, this approach may open a new strategy that leverages existing infrastructures – monoclonal antibody development, phage display, and in vitro evolution - for rapidly developing novel antivirals in vivo.
ContributorsPradhan, Swechchha (Author) / Hariadi, Rizal (Thesis advisor) / Hogue, Ian (Committee member) / Varsani, Arvind (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2022
Description

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate physiology, behavior, and gene expression in the female worker caste. The pheromone acts as a signal of queen presence that suppresses worker reproduction. In the absence of reproduction, young workers focus on taking care of the queen and larvae, known as nurse tasks, while older workers forage. In nurse bees, QMP has fundamental physiological impacts, including increasing abdominal lipid stores and increasing the protein content of hypopharyngeal glands (HPG). The HPG are worker-specific glands that can synthesize royal jelly used in colony nourishment. In workers, larger HPG signifies the ability to secrete royal jelly, while shrunken glands are characteristic of foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the underlying mechanism is unclear: Does the pheromone simply make workers consume more pollen which provides lipids and protein, or does QMP also increase lipogenesis? In this study, I measured abdominal lipogenesis as fatty acid synthase (FAS) activity and monitored abdominal protein content and HPG size in caged, nurse-aged worker bees. In cages, workers were exposed to QMP or not, and they were provided with a lipid less diet in a full factorial design experiment. I found that QMP did not influence abdominal FAS activity or protein, but significantly increased HPG size. The data also revealed a significant positive correlation between abdominal protein and HPG size. My results do not support the idea that QMP modulates lipogenesis in worker bees, but my data can be interpreted to reflect that QMP mobilizes abdominal protein for the production of jelly in the HPG. This finding is in line with a previous study revealing a role of honey bee Brood Pheromone in mobilization of a major protein used in jelly production. Overall, my results support a fundamental role of QMP in worker metabolic processes associated with colony nourishment.

ContributorsOreshkova, Angela (Author) / Amdam, Gro (Thesis director) / Scofield, Sebastian (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

This thesis project is a first-grade curriculum that is tailored for schools with school gardens. The curriculum contains worksheets and activities for the students, making it easier for teachers to take care of the school garden while also playing a part in fighting food injustice. The curriculum has 4 subjects:

This thesis project is a first-grade curriculum that is tailored for schools with school gardens. The curriculum contains worksheets and activities for the students, making it easier for teachers to take care of the school garden while also playing a part in fighting food injustice. The curriculum has 4 subjects: Math, Language Arts, Science, and Nutrition Education.

ContributorsShah, Hirni (Author) / McGregor, Joan (Thesis director) / Lee, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Social Transformation (Contributor)
Created2023-05
Description

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive symptoms, and anxiety for midlife women with mobility impairments specifically. Overall, it was found that midlife women with mobility impairments experienced better sleep when they focused on health information podcasts in comparison to Tai Chi. Change in anxiety and depressive symptoms were negligible.

ContributorsRastkhiz, Tara (Author) / Carvallo, Joanna (Co-author) / Lee, Rebecca (Thesis director) / Rodney, Joseph (Committee member) / Santana, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
Description

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive symptoms, and anxiety for midlife women with mobility impairments specifically. Overall, it was found that midlife women with mobility impairments experienced better sleep when they focused on health information podcasts in comparison to Tai Chi. Change in anxiety and depressive symptoms were negligible.

ContributorsCarvallo, Joanna (Author) / Rastkhiz, Tara (Co-author) / Lee, Rebecca (Thesis director) / Joseph, Rodney (Committee member) / Santana, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
164939-Thumbnail Image.png
Description

Heart disease is the leading cause of death in the developed world and often occurs following myocardial infarction. Apelin is an endogenous prepropeptide that has been studied for its role in improving cardiac contractility and vasodilation but suffers from a short half-life in the body. By encasing apelin in a

Heart disease is the leading cause of death in the developed world and often occurs following myocardial infarction. Apelin is an endogenous prepropeptide that has been studied for its role in improving cardiac contractility and vasodilation but suffers from a short half-life in the body. By encasing apelin in a nanoparticle patch, we were able to slowly release apelin to cardiac tissue and observe its effects for one month following induced myocardial infarction surgery in mice. This study demonstrates that the apelin nanoparticles can protect the heart from myocardial-induced heart failure, observing overall improved cardiac function and reduction of fibrotic scarring associated with post-myocardial infarction compared to a nontreated group.

ContributorsHenderson, Adam (Author) / Chen, Qiang (Thesis director) / Zhu, Wuqiang (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
Description
Weight stigma is present in many aspects of society, and especially in medicine. Weight stigma has detrimental effects on individuals physical and mental health, as well as patient-physician interactions. Application of weight-neutral healthcare ideologies such as Health at Every Size (HAES) are promising ways of decreasing weight stigma within the

Weight stigma is present in many aspects of society, and especially in medicine. Weight stigma has detrimental effects on individuals physical and mental health, as well as patient-physician interactions. Application of weight-neutral healthcare ideologies such as Health at Every Size (HAES) are promising ways of decreasing weight stigma within the medical field without reducing the focus on improving patient health. Most widely applicable interventions include changing the focus of interactions from weight to health-promoting behaviors and lab values, improving provider education, and improving the general population's awareness of the problem.
ContributorsBrouhard, Mya (Author) / Chen, Qiang (Thesis director) / Parker, Lynn (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2024-05
Description

Platelet Rich Plasma (PRP) is an emerging procedure in regenerative medicine that offers a non-surgical minimally invasive way for tissue repair and regeneration. PRP has many different bioactive molecules that are able to influence and help achieve greater recovery and regenerative outcomes. Diet has many effects on platelets and looking

Platelet Rich Plasma (PRP) is an emerging procedure in regenerative medicine that offers a non-surgical minimally invasive way for tissue repair and regeneration. PRP has many different bioactive molecules that are able to influence and help achieve greater recovery and regenerative outcomes. Diet has many effects on platelets and looking at the mechanism in which platelet function and aggregation are affected with different diets shows how they are able to affect PRP therapy. Looking at these mechanisms allows for better physician recommendations for preprocedural diets to optimize efficacy. This paper conducts a systematic review to investigate the influence that diet can have on PRP outcomes. It was shown that high fat diets lower the efficacy of treatment while the Mediterranean diet helps promote platelet function and help efficacy. The future is to look at more diets while also integrating lifestyle choice before treatment for optimal outcomes.

ContributorsLaguna, Sebastian (Author) / Chen, Qiang (Thesis director) / Goyle, Ashu (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2024-05