Matching Items (337)
130412-Thumbnail Image.png
Description
Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor

Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor protein, influences worker lifespan both as a regulator of behavioral maturation and through anti-oxidant and immune functions. Experimental reduction of Vg mRNA, and thus Vg protein levels, in wild-type bees results in precocious foraging behavior, decreased lifespan, and increased susceptibility to oxidative damage. We sought to separate the effects of Vg on lifespan due to behavioral maturation from those due to immune and antioxidant function using two selected strains of honey bees that differ in their phenotypic responsiveness to Vg gene knockdown. Surprisingly, we found that lifespans lengthen in the strain described as behaviorally and hormonally insensitive to Vg reduction. We then performed targeted gene expression analyses on genes hypothesized to mediate aging and lifespan: the insulin-like peptides (Ilp1 and 2) and manganese superoxide dismutase (mnSOD). The two honey bee Ilps are the most upstream components in the insulin-signaling pathway, which influences lifespan in Drosophila melanogaster and other organisms, while manganese superoxide dismutase encodes an enzyme with antioxidant functions in animals. We found expression differences in the llps in fat body related to behavior (llp1 and 2) and genetic background (Ilp2), but did not find strain by treatment effects. Expression of mnSOD was also affected by behavior and genetic background. Additionally, we observed a differential response to Vg knockdown in fat body expression of mnSOD, suggesting that antioxidant pathways may partially explain the strain-specific lifespan responses to Vg knockdown.
ContributorsIhle, Kate (Author) / Fondrk, M. Kim (Author) / Page, Robert (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-01-01
Description
To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or

To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions with experiments in continuous flow biofilm reactors (CFBRs). CFBR experiments were organized into four sets with these expected outcomes based on the MSNBM as follows: (i) Control, giving full nitrification; (ii) oxygen limitation, giving modest long-term nitrite build up; (iii) FA inhibition, giving no long-term nitrite accumulation; and (iv) FA inhibition plus oxygen limitation, giving major long-term nitrite accumulation. Consistent with MSNBM predictions, the experimental results showed that nitrite accumulated in sets 2–4 in the short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen limitation. Furthermore, nitrite accumulation was substantially greater in set 4, which also included FA inhibition. However, FA inhibition (and accompanying FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation. Nitrite-oxidizing bacteria (NOB) activity batch tests confirmed that little NOB or only a small fraction of NOB were present in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous modeling results that nitrite accumulation could be achieved with a lower ammonium concentration than had been required for a suspended-growth process. Additional findings were that the biofilm exposed to low dissolved oxygen (DO) limitation and FA inhibition was substantially denser and probably had a lower detachment rate.
ContributorsPark, Seongjun (Author) / Chung, Jinwook (Author) / Rittmann, Bruce (Author) / Bae, Wookeun (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2015-01-01
130419-Thumbnail Image.png
Description
Chloroform and methanol are superior solvents for lipid extraction from photosynthetic microorganisms, because they can overcome the resistance offered by the cell walls and membranes, but they are too toxic and expensive to use for large-scale fuel production. Biomass from the photosynthetic microalga Scenedesmus, subjected to a commercially available pre-treatment

Chloroform and methanol are superior solvents for lipid extraction from photosynthetic microorganisms, because they can overcome the resistance offered by the cell walls and membranes, but they are too toxic and expensive to use for large-scale fuel production. Biomass from the photosynthetic microalga Scenedesmus, subjected to a commercially available pre-treatment technology called Focused-Pulsed® (FP), yielded 3.1-fold more crude lipid and fatty acid methyl ester (FAME) after extraction with a range of solvents. FP treatment increased the FAME-to-crude-lipid ratio for all solvents, which means that the extraction of non-lipid materials was minimized, while the FAME profile itself was unchanged compared to the control. FP treatment also made it possible to use only a small proportion of chloroform and methanol, along with isopropanol, to obtain equivalent yields of lipid and FAME as with 100% chloroform plus methanol.
ContributorsLai, Yenjung Sean (Author) / Parameswaran, Prathap (Author) / Li, Ang (Author) / Baez, Maria (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2014-12-01
130424-Thumbnail Image.png
Description
Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively.

Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.
ContributorsPan, Shihui (Author) / Yan, Ning (Author) / Liu, Xinyue (Author) / Wang, Wenbing (Author) / Zhang, Yongming (Author) / Liu, Rui (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2014-11-01
Description
Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin

Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, formation of heterochromatin at telomeres and the homothallic silent mating type loci require the Sir3 protein. Here, we use a combination of sedimentation velocity, atomic force microscopy and nucleosomal array capture to characterize the stoichiometry and conformation of Sir3 nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome. We also find that Sir3 fibres are less compact than canonical magnesium-induced 30 nm fibres. We suggest that heterochromatin proteins promote silencing by ‘coating’ nucleosomal arrays, stabilizing interactions between nucleosomal histones and DNA.
ContributorsSwygert, Sarah G. (Author) / Manning, Benjamin J. (Author) / Senapati, Subhadip (Author) / Kaur, Parminder (Author) / Lindsay, Stuart (Author) / Demeler, Borries (Author) / Peterson, Craig L. (Author) / Biodesign Institute (Contributor) / Single Molecule Biophysics (Contributor)
Created2014-08-01
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
Description

The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while

The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while effluent COD and N are not changed much by hybrid operation, the hybrid system gives increased methane production in the AD and decreased sludge wasting, both caused mainly by a negative actual solids retention time in the hybrid AD. Increased retention of biomass and EPS allows for more hydrolysis and conversion to methane in the hybrid AD. However, fermenters and methanogens survive in the AS, allowing significant methane production in the settler and thickener of both systems, and AD sludge recycle makes methane formation greater in the hybrid system.

ContributorsYoung, Michelle (Author) / Marcus, Andrew (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2013-08-13
131199-Thumbnail Image.png
Description
The experiments conducted in this report supported previous evidence (Bethany et al., 2019) that a newly identified predatory bacterium causes a higher rate of mortality in the biological soil crust cyanobacterium M. vaginatus when in hot soils than in cold soils. I predicted that the extracellular propagules of this predatory

The experiments conducted in this report supported previous evidence (Bethany et al., 2019) that a newly identified predatory bacterium causes a higher rate of mortality in the biological soil crust cyanobacterium M. vaginatus when in hot soils than in cold soils. I predicted that the extracellular propagules of this predatory bacterium were inactivated at seasonally low temperatures, rendering them non-viable when introduced to M. vaginatus at room temperature. However, I found that the predatory bacterium became only transiently inactive at low temperatures, recovering its pathogenicity when later exposed to warmer temperatures. By contrast, inactivation of infectivity was complete by exposure in both liquid and dry conditions for five days at 40 °C. I also expected that its infectivity towards M. vaginatus was temperature dependent. Indeed, infection was hampered and did not cause high mortality when predator and prey were incubated at or below 10 °C, which could have been due to slowed metabolisms of M. vaginatus or to an inability of the predatory bacterium to attack in cold conditions. Above 10 °C, when M. vaginatus grew faster, time to full death of predator/prey incubations correlated with the rate of growth of healthy cultures.
The experiments in this study observed a correlation between the growth rate of uninfected cultures and the decay rate of infected cultures, meaning that temperatures that cultures that displayed a higher growth rate for uninfected M. vaginatus would die faster when infected with the predatory bacterium. Infected cultures that were incubated at temperatures 4 and 10 °C did not display death and this could have been due to lower activity of M. vaginatus at lower temperatures or the inability for the predatory bacterium to attack at lower temperatures.
ContributorsAhamed, Anisa Nour (Author) / Garcia-Pichel, Ferran (Thesis director) / Giraldo Silva, Ana Maria (Committee member) / Bethany Rakes, Julie (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria

The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria existing in human brains, which can be investigated in honeybee brains due to their well-documented structure. The purpose of this study is to establish if lipopolysaccharide—a molecule on bacteria membranes—is present in the honeybee brain and if it colocalizes with vitellogenin—an immune mediator. Additionally, this study also seeks to establish the efficacy of embedding tissue samples in resin and performing immunohistochemistry for vitellogenin and lipopolysaccharide on sections.
ContributorsStrange, Amalie Sofie (Co-author) / Strange, Amalie (Co-author) / Amdam, Gro (Thesis director) / Baluch, Page (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130355-Thumbnail Image.png
Description
Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of

Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology.
Results
Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed.
Conclusions
Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general.
ContributorsGraham, Allie M. (Author) / Munday, Michael D. (Author) / Kaftanoglu, Osman (Author) / Page, Robert (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2011-04-13