Matching Items (129)
Filtering by

Clear all filters

130326-Thumbnail Image.png
Description

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH[subscript 3]-N) from 890 ± 295 to 2040 ± 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.

Created2016-08-11
130412-Thumbnail Image.png
Description
Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor

Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor protein, influences worker lifespan both as a regulator of behavioral maturation and through anti-oxidant and immune functions. Experimental reduction of Vg mRNA, and thus Vg protein levels, in wild-type bees results in precocious foraging behavior, decreased lifespan, and increased susceptibility to oxidative damage. We sought to separate the effects of Vg on lifespan due to behavioral maturation from those due to immune and antioxidant function using two selected strains of honey bees that differ in their phenotypic responsiveness to Vg gene knockdown. Surprisingly, we found that lifespans lengthen in the strain described as behaviorally and hormonally insensitive to Vg reduction. We then performed targeted gene expression analyses on genes hypothesized to mediate aging and lifespan: the insulin-like peptides (Ilp1 and 2) and manganese superoxide dismutase (mnSOD). The two honey bee Ilps are the most upstream components in the insulin-signaling pathway, which influences lifespan in Drosophila melanogaster and other organisms, while manganese superoxide dismutase encodes an enzyme with antioxidant functions in animals. We found expression differences in the llps in fat body related to behavior (llp1 and 2) and genetic background (Ilp2), but did not find strain by treatment effects. Expression of mnSOD was also affected by behavior and genetic background. Additionally, we observed a differential response to Vg knockdown in fat body expression of mnSOD, suggesting that antioxidant pathways may partially explain the strain-specific lifespan responses to Vg knockdown.
ContributorsIhle, Kate (Author) / Fondrk, M. Kim (Author) / Page, Robert (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-01-01
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
132722-Thumbnail Image.png
Description
The first numerical predictions of the dynamical diquark model of multiquark exotic hadrons are presented. Using Born-Oppenheimer potentials calculated from lattice QCD and phenomenological diquark(triquark) masses, mass eigenvalues that are degenerate in spin and isospin are computed from numerical solutions to both coupled and uncoupled Schroedinger equations. Assuming reasonable estimates

The first numerical predictions of the dynamical diquark model of multiquark exotic hadrons are presented. Using Born-Oppenheimer potentials calculated from lattice QCD and phenomenological diquark(triquark) masses, mass eigenvalues that are degenerate in spin and isospin are computed from numerical solutions to both coupled and uncoupled Schroedinger equations. Assuming reasonable estimates of the fine-structure splittings, we find that the band structure of our mass spectra agrees well with the experimentally observed spectrum of charmonium-like states. Using our best fits, we predict a number of unobserved states, such as pentaquark states that lie below the charmonium-plus-nucleon threshold.
ContributorsPeterson, Curtis Taylor Taylor (Author) / Lebed, Richard (Thesis director) / Belitsky, Andrei (Committee member) / Department of Physics (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130355-Thumbnail Image.png
Description
Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of

Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology.
Results
Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed.
Conclusions
Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general.
ContributorsGraham, Allie M. (Author) / Munday, Michael D. (Author) / Kaftanoglu, Osman (Author) / Page, Robert (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2011-04-13
133696-Thumbnail Image.png
Description
The gastrointestinal (GI) tract is home to a complex and diverse microbial ecosystem that contributes to health or disease in many aspects. While bacterial species are the majority in the GI tract, their cohabitants, fungal species, should not be forgotten. Children with autism spectrum disorder (ASD) often suffer from GI

The gastrointestinal (GI) tract is home to a complex and diverse microbial ecosystem that contributes to health or disease in many aspects. While bacterial species are the majority in the GI tract, their cohabitants, fungal species, should not be forgotten. Children with autism spectrum disorder (ASD) often suffer from GI disorders and associated symptoms, implying a role the bacterial and fungal gut microbiota play in maintaining human health. The irregularities in GI symptoms can negatively affect the overall quality of life or even worsen behavioral symptoms the children present. Even with the increase in the availability of next-generation sequencing technologies, the composition and diversities of fungal microbiotas are understudied, especially in the context of ASD. We therefore aimed to investigate the gut mycobiota of 36 neurotypical children and 38 children with ASD. We obtained stool samples from all participants, as well as autism severity and GI symptom scores to help us understand the effect the mycobiome has on these symptoms. By targeting the fungal internal transcribed spacer (ITS) and bacterial 16S rRNA V4 regions, we obtained fungal and bacterial amplicon sequences, from which we investigated the diversities, composition, and potential link between two different ecological clades. From fungal amplicon sequencing results, we observed a significant decrease in the observed fungal OTUs in children with ASD, implying a lack of potentially beneficial fungi in ASD subjects. We performed Bray-Curtis principal coordinates analysis and observed significant differences in fungal microbiota composition between the two groups. Taxonomic analysis showed higher relative abundances of Candida , Pichia, Penicillium , and Exophiala in ASD subjects, yet due to a large dispersion of data, the differences were not statistically significant. Interestingly, we observed a bimodal distribution of Candida abundances within children with ASD. Candida's relative abundance was not significantly correlated with GI scores, but children with high Candida relative abundances presented significantly higher Autism Treatment Evaluation Checklist (ATEC) scores, suggesting a role of Candida on ASD behavioral symptoms. Regarding the bacterial gut microbiota, we found marginally lower observed OTUs and significantly lower relative abundance of Prevotella in the ASD group, which was consistent with previous studies. Taken together, we demonstrated that autism is closely linked with a distinct gut mycobiota, characterized by a loss of fungal and bacterial diversity and an altered fungal and bacterial composition.
ContributorsPatel, Jigar (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Kang, Dae Wook (Committee member) / Adams, James (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134024-Thumbnail Image.png
Description
Honeybees (Apis mellifera) are pollinators that face multiple challenges during foraging such as fungicides applied to floral sources. Fungicides are chemicals used to inhibit key fungal mechanisms like metabolism, but their effects remain relatively unknown in bees. In addition, studying the maturing bee can help us identify demographics that are

Honeybees (Apis mellifera) are pollinators that face multiple challenges during foraging such as fungicides applied to floral sources. Fungicides are chemicals used to inhibit key fungal mechanisms like metabolism, but their effects remain relatively unknown in bees. In addition, studying the maturing bee can help us identify demographics that are more vulnerable to toxic materials like fungicides. The purpose of this study is test whether maturation and the fungicide Pristine influence the permeability of the blood-brain barrier. Specifically, we use a transportable dye to test how blood brain barrier transporter function responds to toxic insult and how it changes with age. Oral ingestion of Pristine by female workers did not have an effect on blood brain barrier permeability which suggests Pristine may have no or longer term consequences in the bee. However, blood brain barrier permeability changed with the bee's age which could be explained by the regulation of blood brain barrier transporters during natural transitions in hive task or the presence of hemolymph protein filtration
ContributorsPatel, Aamir S. (Author) / Amdam, Gro (Thesis director) / Harrison, Jon (Committee member) / Ozturk, Cahit (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134043-Thumbnail Image.png
Description
Dire wolves have recently risen to fame as a result of the popular television program Game of Thrones, and thus many viewers know dire wolves as the sigil and loyal companions of the Stark house. Far fewer recognize dire wolves by their scientific name, Canis dirus, or understand the population

Dire wolves have recently risen to fame as a result of the popular television program Game of Thrones, and thus many viewers know dire wolves as the sigil and loyal companions of the Stark house. Far fewer recognize dire wolves by their scientific name, Canis dirus, or understand the population history of this ‘fearsome wolf’ species that roamed the Americas until the megafaunal mass extinction event of the Late Pleistocene. Although numerous studies have examined the species using morphological and geographical methods, thus far their results have been either inconclusive or contradictory. Remaining questions include the relationships dire wolves share with other members of the Canis genus and the internal structure of their populations. Advancements in ancient DNA recovery methods may make it possible to study dire wolf specimens at the molecular level for the first time and may therefore prove useful in clarifying the answers to these questions. Eighteen dire wolf specimens were collected from across the United States and subjected to ancient DNA extraction, library preparation, amplification and purification, bait preparation and capture, and next-generation sequencing. There was an average of 76.9 unique reads and 5.73% coverage when mapped to the Canis familiaris reference genome in ultraconserved regions of the mitochondrial genome. The results indicate that endogenous ancient DNA was not successfully recovered and perhaps ancient DNA recovery methods have not advanced to the point of retrieving informative amounts of DNA from particularly old, thermally degraded specimens. Nevertheless, the ever-changing nature of ancient DNA research makes it vital to continually test the limitations of the field and suggests that ancient DNA recovery methods will prove useful in illuminating dire wolf population history at some point in the future.
ContributorsSkerry, Katherine Marie (Author) / Stone, Anne (Thesis director) / Amdam, Gro (Committee member) / Larson, Greger (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Nutrition and Health Promotion (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134050-Thumbnail Image.png
Description
The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented

The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented by negative values for oxidation-reduction potential (ORP), which can be maintained through the addition of reducing agents such as ZVI, or to a lesser extent, the fermentation of added substrates such as lactate. Microcosm conditions represented distance from an in-situ treatment injection well and contained different types of iron species and dechlorinating bioaugmentation cultures. Diminishing efficacy of microbial reductive dechlorination along a gradient away from the injection zone was observed, characterized by increasing ORP and decreasing pH. Results also suggested that the use of particular biostimulation substrates is key to prioritizing the dechlorination reaction against competing microbial and abiotic processes by supplying electrons needed for microbial dechlorination.
ContributorsMouti, Aatikah (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134434-Thumbnail Image.png
Description
Hydrogen is a key indicator of microbial activity in soils/sediments and groundwater because of its role as an electron donor for reducing sulfate and nitrate and carrying out other metabolic processes. The goal of this study was to quantitatively measure the total biological hydrogen demand (TBHD) of soils and sediments

Hydrogen is a key indicator of microbial activity in soils/sediments and groundwater because of its role as an electron donor for reducing sulfate and nitrate and carrying out other metabolic processes. The goal of this study was to quantitatively measure the total biological hydrogen demand (TBHD) of soils and sediments in anaerobic environments. We define the total biological hydrogen demand as the sum of all electron acceptors that can be used by hydrogen-oxidizing microorganisms. Three sets of anaerobic microcosms were set up with different soils/sediments, named Carolina, Garden, and ASM. The microcosms included 25g of soil/sediment and 75 mL of anaerobic medium. 10 mL of hydrogen were pulse-fed for 100 days. Hydrogen consumption and methane production were tracked using gas chromatography. Chemical analysis of each soil was performed at the beginning of the experiment to determine the concentration of electron acceptors in the soils/sediments, including nitrate, sulfate, iron and bicarbonate. An analysis of the microbial community was done at t = 0 and at the end of the 100 days to examine changes in the microbial community due to the metabolic processes occurring as hydrogen was consumed. Carolina consumed 9810 43 mol of hydrogen and produced 19,572 2075 mol of methane. Garden consumed 4006 33 mol of hydrogen and produced 7,239 543 mol of methane. Lastly, ASM consumed 1557 84 mol of hydrogen and produced 1,325 715 mol of methane. I conclude that the concentration of bicarbonate initially present in the soil had the most influence over the hydrogen demand and microbial community enrichment. To improve this research, I recommend that future studies include a chemical analysis of final soil geochemistry conditions, as this will provide with a better idea of what pathway the hydrogen is taking in each soil.
ContributorsLuna Aguero, Marisol (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05