Matching Items (46)
Filtering by

Clear all filters

128511-Thumbnail Image.png
Description

Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with

Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

ContributorsHan, Xiao (Author) / Shen, Zhesi (Author) / Wang, Wen-Xu (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-07-22
129039-Thumbnail Image.png
Description

Background: Immunomodulatory drugs (IMiDs), such as lenalidomide, are therapeutically active compounds that bind and modulate the E3 ubiquitin ligase substrate recruiter cereblon, thereby affect steady-state levels of cereblon and cereblon binding partners, such as ikaros and aiolos, and induce many cellular responses, including cytotoxicity to multiple myeloma (MM) cells. Nevertheless, it

Background: Immunomodulatory drugs (IMiDs), such as lenalidomide, are therapeutically active compounds that bind and modulate the E3 ubiquitin ligase substrate recruiter cereblon, thereby affect steady-state levels of cereblon and cereblon binding partners, such as ikaros and aiolos, and induce many cellular responses, including cytotoxicity to multiple myeloma (MM) cells. Nevertheless, it takes many days for MM cells to die after IMiD induced depletion of ikaros and aiolos and thus we searched for other cereblon binding partners that participate in IMiD cytotoxicity.

Methods: Cereblon binding partners were identified from a MM cell line expressing histidine-tagged cereblon by pulling down cereblon and its binding partners and verified by co-immunoprecipitation. IMiD effects were determined by western blot analysis, cell viability assay, microRNA array and apoptosis analysis.

Results: We identified argonaute 2 (AGO2) as a cereblon binding partner and found that the steady-state levels of AGO2 were regulated by cereblon. Upon treatment of IMiD-sensitive MM cells with lenalidomide, the steady-state levels of cereblon were significantly increased, whereas levels of AGO2 were significantly decreased. It has been reported that AGO2 plays a pivotal role in microRNA maturation and function. Interestingly, upon treatment of MM cells with lenalidomide, the steady-state levels of microRNAs were significantly altered. In addition, silencing of AGO2 in MM cells, regardless of sensitivity to IMiDs, significantly decreased the levels of AGO2 and microRNAs and massively induced cell death.

Conclusion: These results support the notion that the cereblon binding partner AGO2 plays an important role in regulating MM cell growth and survival and AGO2 could be considered as a novel drug target for overcoming IMiD resistance in MM cells.

ContributorsXu, Qinqin (Author) / Hou, Yue-xian (Author) / Langlais, Paul (Author) / Erickson, Patrick (Author) / Zhu, James (Author) / Shi, Chang-Xin (Author) / Luo, Moulun (Author) / Zhu, Yuanxiao (Author) / Xu, Ye (Author) / Mandarino, Lawrence (Author) / Stewart, Keith (Author) / Chang, Xiu-bao (Author) / College of Health Solutions (Contributor)
Created2016-05-03
Description

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.

Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.

Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.

ContributorsSadd, Ben M. (Author) / Barribeau, Seth M. (Author) / Bloch, Guy (Author) / de Graaf, Dirk C. (Author) / Dearden, Peter (Author) / Elsik, Christine G. (Author) / Gadau, Juergen (Author) / Grimmelikhuijzen, Cornelis J. P. (Author) / Hasselmann, Martin (Author) / Lozier, Jeffrey D. (Author) / Robertson, Hugh M. (Author) / Smagghe, Guy (Author) / Stolle, Eckart (Author) / Van Vaerenbergh, Matthias (Author) / Waterhouse, Robert M. (Author) / Bornberg-Bauer, Erich (Author) / Klasberg, Steffen (Author) / Bennett, Anna K. (Author) / Camara, Francisco (Author) / Guigo, Roderic (Author) / Hoff, Katharina (Author) / Mariotti, Marco (Author) / Munoz-Torres, Monica (Author) / Murphy, Terence (Author) / Santesmasses, Didac (Author) / Amdam, Gro (Author) / Beckers, Matthew (Author) / Beye, Martin (Author) / Biewer, Matthias (Author) / Bitondi, Marcia MG (Author) / Blaxter, Mark L. (Author) / Bourke, Andrew FG (Author) / Brown, Mark JF (Author) / Buechel, Severine D. (Author) / Cameron, Rossanah (Author) / Cappelle, Kaat (Author) / Carolan, James C. (Author) / Christiaens, Olivier (Author) / Ciborowski, Kate L. (Author) / Clarke, David F. (Author) / Colgan, Thomas J. (Author) / Collins, David H. (Author) / Cridge, Andrew G. (Author) / Dalmay, Tamas (Author) / Dreier, Stephanie (Author) / du Plessis, Louis (Author) / Duncan, Elizabeth (Author) / Erler, Silvio (Author) / Evans, Jay (Author) / Falcon, Talgo (Author) / Flores, Kevin (Author) / Freitas, Flavia CP (Author) / Fuchikawa, Taro (Author) / Gempe, Tanja (Author) / Hartfelder, Klaus (Author) / Hauser, Frank (Author) / Helbing, Sophie (Author) / Humann, Fernanda (Author) / Irvine, Frano (Author) / Jermiin, Lars S (Author) / Johnson, Claire E. (Author) / Johnson, Reed M (Author) / Jones, Andrew K. (Author) / Kadowaki, Tatsuhiko (Author) / Kidner, Jonathan H. (Author) / Koch, Vasco (Author) / Kohler, Arian (Author) / Kraus, F. Bernhard (Author) / Lattorff, H. Michael G. (Author) / Leask, Megan (Author) / Lockett, Gabrielle A. (Author) / Mallon, Eamonn B. (Author) / Marco Antonio, David S. (Author) / Marxer, Monika (Author) / Meeus, Ivan (Author) / Moritz, Robin FA (Author) / Nair, Ajay (Author) / Napflin, Kathrin (Author) / Nissen, Inga (Author) / Niu, Jinzhi (Author) / Nunes, Francis MF (Author) / Oakeshott, John G. (Author) / Osborne, Amy (Author) / Otte, Marianne (Author) / Pinheiro, Daniel G. (Author) / Rossie, Nina (Author) / Rueppell, Olav (Author) / Santos, Carolina G (Author) / Schmid-Hempel, Regula (Author) / Schmitt, Bjorn D. (Author) / Schulte, Christina (Author) / Simoes, Zila LP (Author) / Soares, Michelle PM (Author) / Swevers, Luc (Author) / Winnebeck, Eva C. (Author) / Wolschin, Florian (Author) / Yu, Na (Author) / Zdobnov, Evgeny M (Author) / Aqrawi, Peshtewani K (Author) / Blakenburg, Kerstin P (Author) / Coyle, Marcus (Author) / Francisco, Liezl (Author) / Hernandez, Alvaro G. (Author) / Holder, Michael (Author) / Hudson, Matthew E. (Author) / Jackson, LaRonda (Author) / Jayaseelan, Joy (Author) / Joshi, Vandita (Author) / Kovar, Christie (Author) / Lee, Sandra L. (Author) / Mata, Robert (Author) / Mathew, Tittu (Author) / Newsham, Irene F. (Author) / Ngo, Robin (Author) / Okwuonu, Geoffrey (Author) / Pham, Christopher (Author) / Pu, Ling-Ling (Author) / Saada, Nehad (Author) / Santibanez, Jireh (Author) / Simmons, DeNard (Author) / Thornton, Rebecca (Author) / Venkat, Aarti (Author) / Walden, Kimberly KO (Author) / Wu, Yuan-Qing (Author) / Debyser, Griet (Author) / Devreese, Bart (Author) / Asher, Claire (Author) / Blommaert, Julie (Author) / Chipman, Ariel D. (Author) / Chittka, Lars (Author) / Fouks, Bertrand (Author) / Liu, Jisheng (Author) / O'Neill, Meaghan P (Author) / Sumner, Seirian (Author) / Puiu, Daniela (Author) / Qu, Jiaxin (Author) / Salzberg, Steven L (Author) / Scherer, Steven E (Author) / Muzny, Donna M. (Author) / Richards, Stephen (Author) / Robinson, Gene E (Author) / Gibbs, Richard A. (Author) / Schmid-Hempel, Paul (Author) / Worley, Kim C (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-24
128791-Thumbnail Image.png
Description

Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely

Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.

ContributorsTran, Lee (Author) / Hanavan, Paul (Author) / Campbell, Latoya (Author) / De Filippis, Elena (Author) / Lake, Douglas (Author) / Coletta, Dawn (Author) / Roust, Lori R. (Author) / Mandarino, Lawrence (Author) / Carroll, Chad C. (Author) / Katsanos, Christos (Author) / College of Health Solutions (Contributor)
Created2016-08-17
128820-Thumbnail Image.png
Description

In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen

In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates.

ContributorsDe Souza, Daiana A. (Author) / Wang, Ying (Author) / Kaftanoglu, Osman (Author) / De Jong, David (Author) / Amdam, Gro (Author) / Goncalves, Lionel S. (Author) / Francoy, Tiago M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-20
Description
Major Depressive Disorder (MDD) is a common mental disorder that can affect individuals at nearly every stage of life. Women are especially vulnerable to MDD in part, from ovarian hormone level fluctuations. In this thesis, I focused on MDD using a rat model in middle-age to explore potential sex differences

Major Depressive Disorder (MDD) is a common mental disorder that can affect individuals at nearly every stage of life. Women are especially vulnerable to MDD in part, from ovarian hormone level fluctuations. In this thesis, I focused on MDD using a rat model in middle-age to explore potential sex differences in response to a corticosterone (CORT) – induced depressive-like state. Estradiol (E2), a naturally occurring steroid sex hormone in humans and rats, is implicated in mood changes, which is especially prominent during the menopause transition. CORT, a stress hormone, was used to create a depressive-like state in middle-aged female (F) and male (M) rats with their gonads surgically removed. This produced the following independent treatment groups: Sex (F, M), CORT (vehicle = V ml/kg, C 40mg/kg), E2 (V 0.1 ml, E 0.3µg/0.1ml). CORT and E2 injections were injected daily, s.c) for 7 days before behavioral testing began and continued throughout the study when behavior was assessed. For my honor’s thesis, I focused on the social interaction test and elevated plus maze to investigate whether CORT enhanced social avoidance and anxiety, and whether E2 mitigated the CORT effects. In the social interaction test, three new behaviors were assessed (interacting, grooming, and immobility) to better understand exploratory and anxiety profiles of the rats, and these behaviors were quantified over two 5-minute periods in the 10-minute trial. These new quantifications showed that for the female rats, C+E and V+V enhanced the interaction with the novel rat significantly more than an inanimate object, which was not observed in the females given CORT only or E2 only. The males in all conditions showed a significant preference for side with the novel rat compared to the object, however no treatment differences were observed. In both sexes, the overall time spent interacting decreased in the second five minutes of quantification compared to the first five minutes. No effects were observed with grooming or immobility, in part from the high variability across rats. For EPM, female rats treated with CORT and E2 exhibited a lower anxiety index than compared to female rats given CORT only, indicating that E2 mitigated the depressive-like effects of CORT. Males showed no CORT or E2 effects. The result in part supported my hypothesis, as the CORT-treated females exhibited reduced socialization and E2 improved socialization in CORT-treated females, as this was seen in the F-C-E group. Interestingly, CORT failed to produce a depressive-like effect in males in both behavioral tests, which was an unexpected outcome. These results suggest that administration of E2 with CORT mitigated the depressive-like state created by CORT in female rats, however failed to produce these outcomes in males. The outcome of this work will give us insight into the potential mechanisms that may contribute to sex differences with MDD.
ContributorsSladkova, Sara (Author) / Conrad, Cheryl (Thesis director) / Amdam, Gro (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2024-05