Matching Items (65)
Description

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate physiology, behavior, and gene expression in the female worker caste. The pheromone acts as a signal of queen presence that suppresses worker reproduction. In the absence of reproduction, young workers focus on taking care of the queen and larvae, known as nurse tasks, while older workers forage. In nurse bees, QMP has fundamental physiological impacts, including increasing abdominal lipid stores and increasing the protein content of hypopharyngeal glands (HPG). The HPG are worker-specific glands that can synthesize royal jelly used in colony nourishment. In workers, larger HPG signifies the ability to secrete royal jelly, while shrunken glands are characteristic of foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the underlying mechanism is unclear: Does the pheromone simply make workers consume more pollen which provides lipids and protein, or does QMP also increase lipogenesis? In this study, I measured abdominal lipogenesis as fatty acid synthase (FAS) activity and monitored abdominal protein content and HPG size in caged, nurse-aged worker bees. In cages, workers were exposed to QMP or not, and they were provided with a lipid less diet in a full factorial design experiment. I found that QMP did not influence abdominal FAS activity or protein, but significantly increased HPG size. The data also revealed a significant positive correlation between abdominal protein and HPG size. My results do not support the idea that QMP modulates lipogenesis in worker bees, but my data can be interpreted to reflect that QMP mobilizes abdominal protein for the production of jelly in the HPG. This finding is in line with a previous study revealing a role of honey bee Brood Pheromone in mobilization of a major protein used in jelly production. Overall, my results support a fundamental role of QMP in worker metabolic processes associated with colony nourishment.

ContributorsOreshkova, Angela (Author) / Amdam, Gro (Thesis director) / Scofield, Sebastian (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022.

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022. The patterns of publications on specific topics over time can tell us what is perceived as a current major cause by physicians, public leaders, researchers, and the public. A deeper dive into systemic inequality as a cause of maternal morbidity and mortality highlights it as a major contributor to these high rates, but that progress is slowly being made through the implementation of detection and prevention tactics, as well as accessible prenatal programs and care.

ContributorsRettig, Lelia (Author) / Amdam, Gro (Thesis director) / Bang, Christofer (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2023-05
155013-Thumbnail Image.png
Description
Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs

Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs may contribute to behavioral modifications. Heavy metals and metalloids are persistent environmental pollutants and induce neurological deficits in multiple organisms. However, in the honey bee, an important insect pollinator, little is known about the sublethal effects of heavy metal and metalloid toxicity though they are exposed to these toxins chronically in some environments. In this thesis I investigate the sublethal effects of copper, cadmium, lead, and selenium on honey bee behavior and identify potential mechanisms mediating the behavioral modifications. I explore the honey bees’ ability to detect these toxins, their sensory perception of sucrose following toxin exposure, and the effects of toxin ingestion on performance during learning and memory tasks. The effects depend on the specific metal. Honey bees detect and reject copper containing solutions, but readily consume those contaminated with cadmium and lead. And, exposure to lead may alter the sensory perception of sucrose. I also demonstrate that acute selenium exposure impairs learning and long-term memory formation or recall. Localizing selenium accumulation following chronic exposure reveals that damage to non-neural organs and peripheral sensory structures is more likely than direct neurotoxicity. Probable mechanisms include gut microbiome alterations, gut lining

damage, immune system activation, impaired protein function, or aberrant DNA methylation. In the case of DNA methylation, I demonstrate that inhibiting DNA methylation dynamics can impair long-term memory formation, while the nurse-to- forager transition is not altered. These experiments could serve as the bases for and reference groups of studies testing the effects of metal or metalloid toxicity on DNA methylation. Each potential mechanism provides an avenue for investigating how neural function is influenced by the physiological status of non-neural organs. And from an ecological perspective, my results highlight the need for environmental policy to consider sublethal effects in determining safe environmental toxin loads for honey bees and other insect pollinators.
ContributorsBurden, Christina Marie (Author) / Amdam, Gro (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Gallitano-Mendel, Amelia (Committee member) / Harrison, Jon (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2016
Description

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods.

ContributorsHunter, Mark S. (Author) / Segelke, Brent (Author) / Messerschmidt, Marc (Author) / Williams, Garth J. (Author) / Zatsepin, Nadia (Author) / Barty, Anton (Author) / Benner, W. Henry (Author) / Carlson, David B. (Author) / Coleman, Matthew (Author) / Graf, Alexander (Author) / Hau-Riege, Stefan P. (Author) / Pardini, Tommaso (Author) / Seibert, M. Marvin (Author) / Evans, James (Author) / Boutet, Sebastien (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-12
129567-Thumbnail Image.png
Description

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

ContributorsTrenchevska, Olgica (Author) / Phillips, David A. (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2014-06-23
Description

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare.

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid.

Results: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides.

Conclusions: The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

ContributorsRoss, Caitlin R. (Author) / DeFelice, Dominick S. (Author) / Hunt, Greg J. (Author) / Ihle, Kate (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-21
Description

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.

ContributorsKupitz, Christopher (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Fromme, Raimund (Author) / Zatsepin, Nadia (Author) / Rendek, Kimberly (Author) / Hunter, Mark (Author) / Shoeman, Robert L. (Author) / White, Thomas A. (Author) / Wang, Dingjie (Author) / James, Daniel (Author) / Yang, Jay-How (Author) / Cobb, Danielle (Author) / Reeder, Brenda (Author) / Sierra, Raymond G. (Author) / Liu, Haiguang (Author) / Barty, Anton (Author) / Aquila, Andrew L. (Author) / Deponte, Daniel (Author) / Kirian, Richard (Author) / Bari, Sadia (Author) / Bergkamp, Jesse (Author) / Beyerlein, Kenneth R. (Author) / Bogan, Michael J. (Author) / Caleman, Carl (Author) / Chao, Tzu-Chiao (Author) / Conrad, Chelsie (Author) / Davis, Katherine M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-11
129243-Thumbnail Image.png
Description

It has been suggested that the extended intensity profiles surrounding Bragg reflections that arise when a series of finite crystals of varying size and shape are illuminated by the intense, coherent illumination of an x-ray free-electron laser may enable the crystal’s unit-cell electron density to be obtained ab initio via

It has been suggested that the extended intensity profiles surrounding Bragg reflections that arise when a series of finite crystals of varying size and shape are illuminated by the intense, coherent illumination of an x-ray free-electron laser may enable the crystal’s unit-cell electron density to be obtained ab initio via well-established iterative phasing algorithms. Such a technique could have a significant impact on the field of biological structure determination since it avoids the need for a priori information from similar known structures, multiple measurements near resonant atomic absorption energies, isomorphic derivative crystals, or atomic-resolution data. Here, we demonstrate this phasing technique on diffraction patterns recorded from artificial two-dimensional microcrystals using the seeded soft x-ray free-electron laser FERMI. We show that the technique is effective when the illuminating wavefront has nonuniform phase and amplitude, and when the diffraction intensities cannot be measured uniformly throughout reciprocal space because of a limited signal-to-noise ratio.

ContributorsKirian, Richard (Author) / Bean, Richard J. (Author) / Beyerlein, Kenneth R. (Author) / Barthelmess, Miriam (Author) / Yoon, Chun Hong (Author) / Wang, Fenglin (Author) / Capotondi, Flavio (Author) / Pedersoli, Emanuele (Author) / Barty, Anton (Author) / Chapman, Henry N. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-12
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11