Matching Items (59)
153589-Thumbnail Image.png
Description
Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation

Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation networks and increased populations of immunocompromised individuals (as a result of HIV infection, drug use, cancer therapy, aging, etc). While it is unclear as to how Salmonella ST313 strains cause invasive disease in humans, it is intriguing that the genomic profile of some of these pathovars indicates key differences between classic Typhimurium (broad host range), but similarities to human-specific typhoidal Salmonella Typhi and Paratyphi. In an effort to advance fundamental understanding of the pathogenesis mechanisms of ST313 in humans, I report characterization of the molecular genetic, phenotypic and virulence profiles of D23580 (a representative ST313 strain). Preliminary studies to characterize D23580 virulence, baseline stress responses, and biochemical profiles, and in vitro infection profiles in human surrogate 3-D tissue culture models were done using conventional bacterial culture conditions; while subsequent studies integrated a range of incrementally increasing fluid shear levels relevant to those naturally encountered by D23580 in the infected host to understand the impact of biomechanical forces in altering these characteristics. In response to culture of D23580 under these conditions, distinct differences in transcriptional biosignatures, pathogenesis-related stress responses, in vitro infection profiles and in vivo virulence in mice were observed as compared to those of classic Salmonella pathovars tested.

Collectively, this work represents the first characterization of in vivo virulence and in vitro pathogenesis properties of D23580, the latter using advanced human surrogate models that mimic key aspects of the parental tissue. Results from these studies highlight the importance of studying infectious diseases using an integrated approach that combines actions of biological and physical networks that mimic the host-pathogen microenvironment and regulate pathogen responses.
ContributorsYang, Jiseon (Author) / Nickerson, Cheryl A. (Thesis advisor) / Chang, Yung (Committee member) / Stout, Valerie (Committee member) / Ott, C Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015
155013-Thumbnail Image.png
Description
Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs

Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs may contribute to behavioral modifications. Heavy metals and metalloids are persistent environmental pollutants and induce neurological deficits in multiple organisms. However, in the honey bee, an important insect pollinator, little is known about the sublethal effects of heavy metal and metalloid toxicity though they are exposed to these toxins chronically in some environments. In this thesis I investigate the sublethal effects of copper, cadmium, lead, and selenium on honey bee behavior and identify potential mechanisms mediating the behavioral modifications. I explore the honey bees’ ability to detect these toxins, their sensory perception of sucrose following toxin exposure, and the effects of toxin ingestion on performance during learning and memory tasks. The effects depend on the specific metal. Honey bees detect and reject copper containing solutions, but readily consume those contaminated with cadmium and lead. And, exposure to lead may alter the sensory perception of sucrose. I also demonstrate that acute selenium exposure impairs learning and long-term memory formation or recall. Localizing selenium accumulation following chronic exposure reveals that damage to non-neural organs and peripheral sensory structures is more likely than direct neurotoxicity. Probable mechanisms include gut microbiome alterations, gut lining

damage, immune system activation, impaired protein function, or aberrant DNA methylation. In the case of DNA methylation, I demonstrate that inhibiting DNA methylation dynamics can impair long-term memory formation, while the nurse-to- forager transition is not altered. These experiments could serve as the bases for and reference groups of studies testing the effects of metal or metalloid toxicity on DNA methylation. Each potential mechanism provides an avenue for investigating how neural function is influenced by the physiological status of non-neural organs. And from an ecological perspective, my results highlight the need for environmental policy to consider sublethal effects in determining safe environmental toxin loads for honey bees and other insect pollinators.
ContributorsBurden, Christina Marie (Author) / Amdam, Gro (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Gallitano-Mendel, Amelia (Committee member) / Harrison, Jon (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2016
155874-Thumbnail Image.png
Description
In sub-Saharan Africa, an invasive form of nontyphoidal Salmonella (iNTS) belonging to sequence type (ST)313 has emerged as a major public health concern causing widespread bacteremia and mortality in children with malaria and adults with HIV. Clinically, ST313 pathovars are characterized by the absence of gastroenteritis, which is commonly found

In sub-Saharan Africa, an invasive form of nontyphoidal Salmonella (iNTS) belonging to sequence type (ST)313 has emerged as a major public health concern causing widespread bacteremia and mortality in children with malaria and adults with HIV. Clinically, ST313 pathovars are characterized by the absence of gastroenteritis, which is commonly found in “classical” nontyphoidal Salmonella (NTS), along with multidrug resistance, pseudogene formation, and chromosome degradation. There is an urgent need to understand the biological and physical factors that regulate the disease causing properties of ST313 strains. Previous studies from our lab using dynamic Rotating Wall Vessel (RWV) bioreactor technology and “classical” NTS strain χ3339 showed that physiological fluid shear regulates gene expression, stress responses and virulence in unexpected ways that are not observed using conventional shake and static flask conditions, and in a very different manner as compared to ST313 strain D23580. Leveraging from these findings, the current study was the first to report the effect of fluid shear on the pathogenesis-related stress responses of S. Typhimurium ST313 strain A130, which evolved earlier than D23580 within the ST313 clade. A130 displayed enhanced resistance to acid, oxidative and bile stresses when cultured in the high fluid shear (HFS) control condition relative to the low fluid shear (LFS) condition in stationary phase using Lennox Broth (LB) as the culture medium. The greatest magnitude of the survival benefit conferred by high fluid shear was observed in response to oxidative and acid stresses. No differences were observed for thermal and osmotic stresses. Based on previous findings from our laboratory, we also assessed how the addition of phosphate or magnesium ions to the culture medium altered the acid or oxidative stress responses of A130 grown in the RWV. Addition of either

phosphate or magnesium to the culture medium abrogated the fluid shear-related differences observed for A130 in LB medium for the acid or oxidative stress responses, respectively. Collectively, these findings indicate that like other Salmonella strains assessed thus far by our team, A130 responds to differences in physiological fluid shear, and that ion concentrations can modulate those responses.
ContributorsGutierrez-Jensen, Ami Dave (Author) / Nickerson, Cheryl A. (Thesis advisor) / Barrila, Jennifer (Thesis advisor) / Ott, C. M. (Committee member) / Roland, Kenneth (Committee member) / Arizona State University (Publisher)
Created2017
157913-Thumbnail Image.png
Description
Understanding how microorganisms adapt and respond to the microgravity environment of spaceflight is important for the function and integrity of onboard life support systems, astronaut health and mission success. Microbial contamination of spacecraft Environmental Life Support Systems (ECLSS), including the potable water system, are well documented and have caused major

Understanding how microorganisms adapt and respond to the microgravity environment of spaceflight is important for the function and integrity of onboard life support systems, astronaut health and mission success. Microbial contamination of spacecraft Environmental Life Support Systems (ECLSS), including the potable water system, are well documented and have caused major disruption to spaceflight missions. The potable water system on the International Space Station (ISS) uses recycled wastewater purified by multiple processes so it is safe for astronaut consumption and personal hygiene. However, despite stringent antimicrobial treatments, multiple bacterial species and biofilms have been recovered from this potable water system. This finding raises concern for crew health risks, vehicle operations and ECLSS system integrity during exploration missions. These concerns are further heightened given that 1) potential pathogens have been isolated from the ISS potable water system, 2) the immune response of astronauts is blunted during spaceflight, 3) spaceflight induces unexpected alterations in microbial responses, including growth and biofilm formation, antimicrobial resistance, stress responses, and virulence, and 4) different microbial phenotypes are often observed between reductionistic pure cultures as compared to more complex multispecies co-cultures, the latter of which are more representative of natural environmental conditions. To advance the understanding of the impact of microgravity on microbial responses that could negatively impact spacecraft ECLSS systems and crew health, this study characterized a range of phenotypic profiles in both pure and co-cultures of bacterial isolates collected from the ISS potable water system between 2009 and 2014. Microbial responses profiled included population dynamics, resistance to silver, biofilm formation, and in vitro colonization of intestinal epithelial cells. Growth characteristics and antibiotic sensitivities for bacterial strains were evaluated to develop selective and/or differential media that allow for isolation of a pure culture from co-cultures, which was critical for the success of this study. Bacterial co-culture experiments were performed using dynamic Rotating Wall Vessel (RWV) bioreactors under spaceflight analogue (Low Shear Modeled Microgravity/LSMMG) and control conditions. These experiments indicated changes in fluid shear have minimal impact on strain recovery. The antimicrobial efficacy of silver on both sessile co-cultures, grown on 316L stainless steel coupons, and planktonic co-cultures showed that silver did not uniformly reduce the recovery of all strains; however, it had a stronger antimicrobial effect on biofilm cultures than planktonic cultures. The impact of silver on the ability of RWV cultured planktonic and biofilm bacterial co-cultures to colonize human intestinal epithelial cells showed that, those strains which were impacted by silver treatment, often increased adherence to the monolayer. Results from these studies provide insight into the dynamics of polymicrobial community interactions, biofilm formation and survival mechanisms of ISS potable water isolates, with potential application for future design of ECLSS systems for sustainable human space exploration.
ContributorsKing, Olivia G (Author) / Nickerson, Cheryl (Thesis advisor) / Barrila, Jennifer (Committee member) / Ott, C (Committee member) / Yang, Jiseon (Committee member) / Arizona State University (Publisher)
Created2019
Description
The discovery that mechanical forces regulate microbial virulence, stress responses and gene expression was made using log phase cultures of Salmonella Typhimurium (S. Typhimurium) grown under low fluid shear (LFS) conditions relevant to those encountered in the intestine. However, there has been limited characterization of LFS on other growth phases.

The discovery that mechanical forces regulate microbial virulence, stress responses and gene expression was made using log phase cultures of Salmonella Typhimurium (S. Typhimurium) grown under low fluid shear (LFS) conditions relevant to those encountered in the intestine. However, there has been limited characterization of LFS on other growth phases. To advance the growth-phase dependent understanding of the effect of LFS on S. Typhimurium pathogenicity, this dissertation characterized the effect of LFS on the transcriptomic and phenotypic responses in both stationary and lag phase cultures. In response to LFS, stationary phase cultures exhibited alterations in gene expression associated with metabolism, transport, secretion and stress responses (acid, bile salts, oxidative, and thermal stressors), motility, and colonization of intestinal epithelium (adherence, invasion and intracellular survival). Many of these characteristics are known to be regulated by the stationary phase general stress response regulator, RNA polymerase sigma factor S (RpoS), when S. Typhimurium is grown under conventional conditions. Surprisingly, the stationary phase phenotypic LFS stress response to acid and bile salts, colonization of human intestinal epithelial cells, and swimming motility was not dependent on RpoS. Lag phase cultures exhibited intriguing differences in their LFS regulated transcriptomic and phenotypic profiles as compared to stationary phase cultures, including LFS-dependent regulation of gene expression, adherence to intestinal epithelial cells, and high thermal stress. Furthermore, the addition of cell-free conditioned supernatants derived from either stationary phase LFS or Control cultures modulated the gene expression of lag phase cultures in a manner that differed from either growth phase, however, these supernatants did not modulate the phenotypic responses of lag phase cultures. Collectively, these results demonstrated that S. Typhimurium can sense and respond to LFS as early as lag phase, albeit in a limited fashion, and that the lag phase transcriptomic and phenotypic responses differ from those in stationary phase, which hold important implications for the lifecycle of this pathogen during the infection process.
ContributorsFranco, Karla Paola (Author) / Nikerson, Cheryl A (Thesis advisor) / Bean, Heather D (Committee member) / Stout, Valerie (Committee member) / Ott, C Mark (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2020
Description

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare.

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid.

Results: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides.

Conclusions: The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

ContributorsRoss, Caitlin R. (Author) / DeFelice, Dominick S. (Author) / Hunt, Greg J. (Author) / Ihle, Kate (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-21
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11
128736-Thumbnail Image.png
Description

Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have made it possible to unravel the metabolic modifications associated with this transition. Previous studies

Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have made it possible to unravel the metabolic modifications associated with this transition. Previous studies have revealed extensive remodeling of brain, thorax, and hypopharyngeal gland biochemistry. However, data on changes in the abdomen is scarce. To narrow this gap we investigated the proteomic composition of abdominal tissue in the days typically preceding the onset of foraging in honeybee workers.

In order to get a broader representation of possible protein dynamics, we used workers of two genotypes with differences in the age at which they initiate foraging. This approach was combined with RNA interference-mediated downregulation of an insulin/insulin-like signaling component that is central to foraging behavior, the insulin receptor substrate (irs), and with measurements of glucose and lipid levels.
Our data provide new insight into the molecular underpinnings of phenotypic plasticity in the honeybee, invoke parallels with vertebrate metabolism, and support an integrated and irs-dependent association of carbohydrate and lipid metabolism with the transition from in-nest tasks to foraging.

ContributorsChan, Queenie W. T. (Author) / Mutti, Navdeep (Author) / Foster, Leonard J. (Author) / Kocher, Sarah D. (Author) / Amdam, Gro (Author) / Wolschin, Florian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-09-28
128885-Thumbnail Image.png
Description

Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury

Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969–2009, and the abnormality/injury rate and apparent lack of regeneration were established.

Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines.

Created2011-12-19