Matching Items (303)
130313-Thumbnail Image.png
Description
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the

Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.
ContributorsLi, Dianfan (Author) / Stansfeld, Phillip J. (Author) / Sansom, Mark S. P. (Author) / Keogh, Aaron (Author) / Vogeley, Lutz (Author) / Howe, Nicole (Author) / Lyons, Joseph A. (Author) / Aragao, David (Author) / Fromme, Petra (Author) / Fromme, Raimund (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Kupitz, Christopher (Author) / Rendek, Kimberley (Author) / Weierstall, Uwe (Author) / Zatsepin, Nadia (Author) / Cherezov, Vadim (Author) / Liu, Wei (Author) / Bandaru, Sateesh (Author) / English, Niall J. (Author) / Gati, Cornelius (Author) / Barty, Anton (Author) / Yefanov, Oleksandr (Author) / Chapman, Henry N. (Author) / Diederichs, Kay (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Seibert, M. Marvin (Author) / Caffrey, Martin (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-12-17
130315-Thumbnail Image.png
Description
Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the

Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.
ContributorsEdlund, Petra (Author) / Takala, Heikki (Author) / Claesson, Elin (Author) / Henry, Leocadie (Author) / Dods, Robert (Author) / Lehtivuori, Heli (Author) / Panman, Matthijs (Author) / Pande, Kanupriya (Author) / White, Thomas (Author) / Nakane, Takanori (Author) / Berntsson, Oskar (Author) / Gustavsson, Emil (Author) / Bath, Petra (Author) / Modi, Vaibhav (Author) / Roy Chowdhury, Shatabdi (Author) / Zook, James (Author) / Berntsen, Peter (Author) / Pandey, Suraj (Author) / Poudyal, Ishwor (Author) / Tenboer, Jason (Author) / Kupitz, Christopher (Author) / Barty, Anton (Author) / Fromme, Petra (Author) / Koralek, Jake D. (Author) / Tanaka, Tomoyuki (Author) / Spence, John (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Boutet, Sebastien (Author) / Nango, Eriko (Author) / Moffat, Keith (Author) / Groenhof, Gerrit (Author) / Ihalainen, Janne (Author) / Stojkovic, Emina A. (Author) / Schmidt, Marius (Author) / Westenhoff, Sebastian (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2016-10-19
130318-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement.

Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.
ContributorsNogly, Przemyslaw (Author) / Panneels, Valerie (Author) / Nelson, Garrett (Author) / Gati, Cornelius (Author) / Kimura, Tetsunari (Author) / Milne, Christopher (Author) / Milathianaki, Despina (Author) / Kubo, Minoru (Author) / Wu, Wenting (Author) / Conrad, Chelsie (Author) / Coe, Jesse (Author) / Bean, Richard (Author) / Zhao, Yun (Author) / Bath, Petra (Author) / Dods, Robert (Author) / Harimoorthy, Rajiv (Author) / Beyerlein, Kenneth R. (Author) / Rheinberger, Jan (Author) / James, Daniel (Author) / Deponte, Daniel (Author) / Li, Chufeng (Author) / Sala, Leonardo (Author) / Williams, Garth J. (Author) / Hunter, Mark S. (Author) / Koglin, Jason E. (Author) / Berntsen, Peter (Author) / Nango, Eriko (Author) / Iwata, So (Author) / Chapman, Henry N. (Author) / Fromme, Petra (Author) / Frank, Matthias (Author) / Abela, Rafael (Author) / Boutet, Sebastien (Author) / Barty, Anton (Author) / White, Thomas A. (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Neutze, Richard (Author) / Schertler, Gebhard (Author) / Standfuss, Jorg (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Molecular Sciences (Contributor)
Created2016-08-22
130412-Thumbnail Image.png
Description
Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor

Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor protein, influences worker lifespan both as a regulator of behavioral maturation and through anti-oxidant and immune functions. Experimental reduction of Vg mRNA, and thus Vg protein levels, in wild-type bees results in precocious foraging behavior, decreased lifespan, and increased susceptibility to oxidative damage. We sought to separate the effects of Vg on lifespan due to behavioral maturation from those due to immune and antioxidant function using two selected strains of honey bees that differ in their phenotypic responsiveness to Vg gene knockdown. Surprisingly, we found that lifespans lengthen in the strain described as behaviorally and hormonally insensitive to Vg reduction. We then performed targeted gene expression analyses on genes hypothesized to mediate aging and lifespan: the insulin-like peptides (Ilp1 and 2) and manganese superoxide dismutase (mnSOD). The two honey bee Ilps are the most upstream components in the insulin-signaling pathway, which influences lifespan in Drosophila melanogaster and other organisms, while manganese superoxide dismutase encodes an enzyme with antioxidant functions in animals. We found expression differences in the llps in fat body related to behavior (llp1 and 2) and genetic background (Ilp2), but did not find strain by treatment effects. Expression of mnSOD was also affected by behavior and genetic background. Additionally, we observed a differential response to Vg knockdown in fat body expression of mnSOD, suggesting that antioxidant pathways may partially explain the strain-specific lifespan responses to Vg knockdown.
ContributorsIhle, Kate (Author) / Fondrk, M. Kim (Author) / Page, Robert (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-01-01
Description
The purpose of this project was to discuss the physiological effects of isolation on the human body and how the body adapts. Through reviewing stories and studies of social and perceptual isolation, the adaptations of the human mind are detailed. This project explores the experiences of prisoners, sensory deprivation tanks,

The purpose of this project was to discuss the physiological effects of isolation on the human body and how the body adapts. Through reviewing stories and studies of social and perceptual isolation, the adaptations of the human mind are detailed. This project explores the experiences of prisoners, sensory deprivation tanks, cave explorations, as well as studies involving monkeys and carpenter ants. The adaptations witnessed include hallucinations, increased mortality, anxiety, agitation, altered sense of time, delayed response, and lowered blood pressure. Knowing the factors surrounding the isolation experience is crucial to understand the presenting adaptation methods. These factors include duration, voluntary or involuntary participation, mental strength, and the restriction level of the isolation.

DISCLAIMER: Due to the unexpected COVID-19 pandemic, the attached podcast is a draft recording in lieu of the final recording
ContributorsSidhu, Nimrit (Co-author) / Deacon, Hannah (Co-author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / School of Social Work (Contributor) / College of Health Solutions (Contributor) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria

The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria existing in human brains, which can be investigated in honeybee brains due to their well-documented structure. The purpose of this study is to establish if lipopolysaccharide—a molecule on bacteria membranes—is present in the honeybee brain and if it colocalizes with vitellogenin—an immune mediator. Additionally, this study also seeks to establish the efficacy of embedding tissue samples in resin and performing immunohistochemistry for vitellogenin and lipopolysaccharide on sections.
ContributorsStrange, Amalie Sofie (Co-author) / Strange, Amalie (Co-author) / Amdam, Gro (Thesis director) / Baluch, Page (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
“Let Food be Thy Medicine” focuses on alternative treatment for patients suffering from obesity, diabetes mellitus type 2, hypertension, and coronary artery disease. Nutrition is an important aspect of overall health and can contribute to prevention and management of these conditions, especially when combined with medication and physical activity. Obesity

“Let Food be Thy Medicine” focuses on alternative treatment for patients suffering from obesity, diabetes mellitus type 2, hypertension, and coronary artery disease. Nutrition is an important aspect of overall health and can contribute to prevention and management of these conditions, especially when combined with medication and physical activity. Obesity is a condition that people worldwide struggle with. Adequate nutrition can play a major role in contributing to the prevention of and management of obesity not only through calorie and macronutrient intake but also by affecting hormonal and energy balances in the body. Recommended physical activity levels are included along with dietary
utritional intake recommendations on the educational pamphlet to give patients a starting guideline and better understanding how to help this condition. Type 2 diabetes, high blood pressure, and coronary artery disease are also common conditions treated by healthcare professionals. There are currently several medications on the market to help manage these conditions that range in price and have many side effects. Nutrition and exercise are two factors that can further contribute to the management of type 2 diabetes, high blood pressure, and coronary artery disease, but they can also help prevent and delay their onset. Nutrition and physical activity education along with examples of certain foods that can aid in reaching nutritional goals are outlined in the educational pamphlet to give patients a visual of what is in the academic paper.
Created2019-05
Description
This paper reviews a creative project designed to enhance the simulation experience for College of Nursing and Health Innovation nursing students at Arizona State University. Simulation allows students to practice imperative skills in a safe environment, free from the risk of injury to patients and the consequences of making these

This paper reviews a creative project designed to enhance the simulation experience for College of Nursing and Health Innovation nursing students at Arizona State University. Simulation allows students to practice imperative skills in a safe environment, free from the risk of injury to patients and the consequences of making these errors, in order to master skills that are essential in the clinical setting. Students are able to practice a wide range of invasive and noninvasive skills and hone in on their clinical judgement and critical thinking to make decisions that may be life threatening in a clinical situation. The group members designed written training materials and created corresponding video vignettes that would be utilized to enhance the confederate role and provide the students a deeper understanding of their simulated patient and the simulation scenario. The written training materials that were developed include confederate background information, patient and family education, and guided questions and answers for the video vignettes. The written training materials will be used to guide the students that are portraying the family member during the simulation. Trained standardized patients were hired to play the confederate role in the four video vignettes. The video vignettes portrayed interviews with a family member of the patient that delved into how they felt about their family member's hospitalization and what they hoped to learn from the nurses during their family member's hospitalization. The vignettes will be used to guide students to the needs of the patients and families in the corresponding scenarios. These vignettes will be accessible by students before the start of simulation in order to enhance understanding of the patient and ultimately, the scenario.
ContributorsBenn, Allie (Co-author) / Kiesling, Hannah (Co-author) / O'Brien, Janet (Thesis director) / Calacci, Margaret (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133153-Thumbnail Image.png
Description
The objective of this study was to evaluate and compare the content of nutrition marketing materials within the cafeterias of schools in Central Arizona. By collecting photographs of marketing material from three elementary schools, one K-8 school, three middle schools and three high schools, 59 pieces of nutrition marketing were

The objective of this study was to evaluate and compare the content of nutrition marketing materials within the cafeterias of schools in Central Arizona. By collecting photographs of marketing material from three elementary schools, one K-8 school, three middle schools and three high schools, 59 pieces of nutrition marketing were gathered. The schools chosen were a convenience sample and selected from schools that were already participating in ASU' s School Lunch Study. The photographs were sorted by grade level and then coded quantitatively and qualitatively for their purpose, visual components, strategies used and relevance. Results from this novel study provided insight into prevalence, size, textual content, educational content, strategies for fruit and vegetable marketing, messaging and overall design of existing nutrition marketing within the sample schools. This study found that the prevalence of nutrition marketing within all school cafeterias appeared to be low, particularly within elementary and middle schools. Diverse types of messaging were present among elementary, middle and high schools and a variety of appeals were utilized with little consistency. Many of the strategies used in the nutrition marketing appeared disconnected from the population it was intended to appeal to. Educational components were notably lacking within middle school cafeterias but were often effectively integrated into high school nutrition marketing. The results are unique to this population, and further research is required to evaluate the content of existing nutrition material on a larger scale, so efforts can be made to improve the persuasiveness of nutrition marketing in promoting fruit and vegetable consumption.
Created2018-12
130355-Thumbnail Image.png
Description
Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of

Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology.
Results
Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed.
Conclusions
Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general.
ContributorsGraham, Allie M. (Author) / Munday, Michael D. (Author) / Kaftanoglu, Osman (Author) / Page, Robert (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2011-04-13