Matching Items (187)
150037-Thumbnail Image.png
Description
Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate

Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate biomass in its interior (protected from UV light and free radicals). First, this carrier was tested for ICPB in a continuous-flow photocatalytic circulating-bed biofilm reactor (PCBBR) to mineralize biorecalcitrant organic: 2,4,5-trichlorophenol (TCP). Four mechanisms possibly acting of ICPB were tested separately: TCP adsorption, UV photolysis/photocatalysis, and biodegradation. The carrier exhibited strong TCP adsorption, while photolysis was negligible. Photocatalysis produced TCP-degradation products that could be mineralized and the strong adsorption of TCP to the carrier enhanced biodegradation by relieving toxicity. Validating the ICPB concept, biofilm was protected inside the carriers from UV light and free radicals. ICPB significantly lowered the diversity of the bacterial community, but five genera known to biodegrade chlorinated phenols were markedly enriched. Secondly, decolorization and mineralization of reactive dyes by ICPB were investigated on a refined Ti2-coated biofilm carrier in a PCBBR. Two typical reactive dyes: Reactive Black 5 (RB5) and Reactive Yellow 86 (RY86), showed similar first-order kinetics when being photocatalytically decolorized at low pH (~4-5), which was inhibited at neutral pH in the presence of phosphate or carbonate buffer, presumably due to electrostatic repulsion from negatively charged surface sites on Ti2, radical scavenging by phosphate or carbonate, or both. In the PCBBR, photocatalysis alone with Ti2-coated carriers could remove RB5 and COD by 97% and 47%, respectively. Addition of biofilm inside macroporous carriers maintained a similar RB5 removal efficiency, but COD removal increased to 65%, which is evidence of ICPB despite the low pH. A proposed ICPB pathway for RB5 suggests that a major intermediate, a naphthol derivative, was responsible for most of the residual COD. Finally, three low-temperature sintering methods, called O, D and DN, were compared based on photocatalytic efficiency and Ti2 adherence. The DN method had the best Ti2-coating properties and was a successful carrier for ICPB of RB5 in a PCBBR.
ContributorsLi, Guozheng (Author) / Rittmann, Bruce E. (Thesis advisor) / Halden, Rolf (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2011
148171-Thumbnail Image.png
Description

As the return to normality in the wake of the COVID-19 pandemic enters its early stages, the necessity for accurate, quick, and community-wide surveillance of SARS-CoV-2 has been emphasized. Wastewater-based epidemiology (WBE) has been used across the world as a tool for monitoring the pandemic, but studies of its efficacy

As the return to normality in the wake of the COVID-19 pandemic enters its early stages, the necessity for accurate, quick, and community-wide surveillance of SARS-CoV-2 has been emphasized. Wastewater-based epidemiology (WBE) has been used across the world as a tool for monitoring the pandemic, but studies of its efficacy in comparison to the best-known method for surveillance, randomly selected COVID-19 testing, has limited research. This study evaluated the trends and correlations present between SARS-CoV-2 in the effluent wastewater of a large university campus and random COVID-19 testing results published by the university. A moderately strong positive correlation was found between the random testing and WBE surveillance methods (r = 0.63), and this correlation was strengthened when accommodating for lost samples during the experiment (r = 0.74).

ContributorsWright, Jillian (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / School of Music, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147952-Thumbnail Image.png
Description

An analysis of university flight emissions, carbon neutrality goals, and the global impact of university sanctioned flight.

ContributorsKoehler, Megan Anne (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151911-Thumbnail Image.png
Description
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts,

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4+, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2-. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
ContributorsDoudrick, Kyle (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2013
152167-Thumbnail Image.png
Description
Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from wastewater effluent. Organic CECs can be removed by hydroxyl radical

Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from wastewater effluent. Organic CECs can be removed by hydroxyl radical formed during ozonation, however estimating the ozone demand of wastewater effluent is complicated due to the presence of reduced inorganic species. A method was developed to estimate ozone consumption only by dissolved organic compounds and predict trace organic oxidation across multiple wastewater sources. Organic and engineered nanomaterial (ENM) CEC removal in constructed wetlands was investigated using batch experiments and continuous-flow microcosms containing decaying wetland plants. CEC removal varied depending on their physico-chemical properties, hydraulic residence time (HRT) and relative quantities of plant materials in the microcosms. At comparable HRTs, ENM removal improved with higher quantity of plant materials due to enhanced sorption which was verified in batch-scale studies with plant materials. A fate-predictive model was developed to evaluate the role of design loading rates on organic CEC removal. Areal removal rates increased with hydraulic loading rates (HLRs) and carbon loading rates (CLRs) unless photolysis was the dominant removal mechanism (e.g. atrazine). To optimize CEC removal, wetlands with different CLRs can be used in combination without lowering the net HLR. Organic CEC removal in denitrifying conditions of constructed wetlands was investigated and selected CECs (e.g. estradiol) were found to biotransform while denitrification occurred. Although level of denitrification was affected by HRT, similar impact on estradiol was not observed due to a dominant effect from plant biomass quantity. Overall, both modeling and experimental findings suggest considering CLR as an equally important factor with HRT or HLR to design constructed wetlands for CEC removal. This dissertation provided directions to select design parameters for ozonation (ozone dose) and constructed wetlands (design loading rates) to meet organic CEC removal goals. Future research is needed to understand fate of ENMs during ozonation and quantify the contributions from different transformation mechanisms occurring in the wetlands to incorporate in a model and evaluate the effect of wetland design.
ContributorsSharif, Fariya (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Fox, Peter (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2013
150658-Thumbnail Image.png
Description
V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2)

V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.
ContributorsWang, Guannan (Author) / Chang, Yung (Thesis advisor) / Levitus, Marcia (Committee member) / Misra, Rajeev (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2012
150481-Thumbnail Image.png
Description
The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors

The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. Chapters 2 and 3 demonstrate nitrate removal in a groundwater and identify the maximum nitrate loadings using a pilot-scale MBfR and a pilot-scale PBHR, respectively. Chapter 4 compares the MBfR and the PBHR for denitrification of the same nitrate-contaminated groundwater. The comparison includes the maximum nitrate loading, the effluent water quality of the denitrification reactors, and the impact of post-treatment on water quality. Chapter 5 theoretically and experimentally demonstrates that the nitrate biomass-carrier surface loading, rather than the traditionally used empty bed contact time or nitrate volumetric loading, is the primary design parameter for heterotrophic denitrification. Chapter 6 constructs a pH-control model to predict pH, alkalinity, and precipitation potential in heterotrophic or hydrogen-based autotrophic denitrification reactors. Chapter 7 develops and uses steady-state permeation tests and a mathematical model to determine the hydrogen-permeation coefficients of three fibers commonly used in the MBfR. The coefficients are then used as inputs for the three models in Chapters 8-10. Chapter 8 develops a multispecies biofilm model for simultaneous reduction of nitrate and perchlorate in the MBfR. The model quantitatively and systematically explains how operating conditions affect nitrate and perchlorate reduction and biomass distribution via four mechanisms. Chapter 9 modifies the nitrate and perchlorate model into a nitrate and sulfate model and uses it to identify operating conditions corresponding to onset of sulfate reduction. Chapter 10 modifies the nitrate and perchlorate model into a nitrate and TCE model and uses it to investigate how operating conditions affect TCE reduction and accumulation of TCE reduction intermediates.
ContributorsTang, Youneng (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2012
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136321-Thumbnail Image.png
Description
Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in

Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. These commercial assays measure reactivity against the immunodominant N antigen and can have a false negative rates of 20-30%. Centralized testing by clinical labs can delay rapid screening in an outbreak setting. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to five individual MV proteins representing 85% of the measles proteome. Methods: MV genes were subcloned into pANT_cGST vector to generate C-terminal GST fusion proteins. Single MV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured using a sandwich ELISA for GST expression using relative light units (RLUs) as readouts. Single MV antigens were used as bait to determine the IgG-dependent reactivity in 12 serum samples obtained from immunized animals with previously determined neutralization titer (NT) and the correlation between NT and ELISA reactivity was determined. Results: Protein expression of five measles genes of interest, M, N, F, H, and L, was measured. L exhibited the strongest protein expression with an average RLU value of 4.34 x 10^9. All proteins were expressed at least 50% greater than control (2.33 x 10^7 RLU). As expected, reactivity against the N was the highest, followed by reactivity against M, F, H and L. The best correlation with NT titer was reactivity against F (R^2 = 0.62). Conclusion: These data indicate that the expression of single MV genes M, N, F, H, and L are suitable antigens for serologic capture analysis of measles immunity.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis director) / Reyes del Valle, Jorge (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05