Matching Items (203)
154425-Thumbnail Image.png
Description
Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design

Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design ‘HERMES’ is a radiation-hardened microprocessor with performance comparable to commercially available designs. The reference design ‘eFlash’ is a prototype of soft-error hardened flash memory for configuring Xilinx FPGAs. These designs are manufactured using a foundry bulk CMOS 90-nm low standby power (LP) process. This thesis presents the post-silicon validation results of these designs.
ContributorsGogulamudi, Anudeep Reddy (Author) / Clark, Lawrence T (Thesis advisor) / Holbert, Keith E. (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2016
128683-Thumbnail Image.png
Description

Unidirectional glass fiber reinforced polymer (GFRP) is tested at four initial strain rates (25, 50, 100 and 200 s-1) and six temperatures (−25, 0, 25, 50, 75 and 100 °C) on a servo-hydraulic high-rate testing system to investigate any possible effects on their mechanical properties and failure patterns. Meanwhile, for

Unidirectional glass fiber reinforced polymer (GFRP) is tested at four initial strain rates (25, 50, 100 and 200 s-1) and six temperatures (−25, 0, 25, 50, 75 and 100 °C) on a servo-hydraulic high-rate testing system to investigate any possible effects on their mechanical properties and failure patterns. Meanwhile, for the sake of illuminating strain rate and temperature effect mechanisms, glass yarn samples were complementally tested at four different strain rates (40, 80, 120 and 160 s-1) and varying temperatures (25, 50, 75 and 100 °C) utilizing an Instron drop-weight impact system. In addition, quasi-static properties of GFRP and glass yarn are supplemented as references. The stress–strain responses at varying strain rates and elevated temperatures are discussed. A Weibull statistics model is used to quantify the degree of variability in tensile strength and to obtain Weibull parameters for engineering applications.

ContributorsOu, Yunfu (Author) / Zhu, Deju (Author) / Zhang, Huaian (Author) / Huang, Liang (Author) / Yao, Yiming (Author) / Li, Gaosheng (Author) / Mobasher, Barzin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-19
136219-Thumbnail Image.png
Description
This project details a magnetic field detection system that can be mounted on an unmanned aerial vehicle (UAV). The system is comprised of analog circuitry to detect and process the magnetic signals, digital circuitry to sample and store the data outputted from the analog front end, and finally a UAV

This project details a magnetic field detection system that can be mounted on an unmanned aerial vehicle (UAV). The system is comprised of analog circuitry to detect and process the magnetic signals, digital circuitry to sample and store the data outputted from the analog front end, and finally a UAV to carry and mobilize the electronic parts. The system should be able to sense magnetic fields from power transmission lines, enabling the determination of whether or not current is running through the power line.
ContributorsTheoharatos, Dimitrios (Co-author) / Brazones, Ryan (Co-author) / Pagaduan, Patrick (Co-author) / Allee, David (Thesis director) / Karady, George (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05