Matching Items (310)
Filtering by

Clear all filters

152390-Thumbnail Image.png
Description
Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have

Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have limitations at high temperature resulting in poor permeation performance. To address these limitations, the use of a dense dual-phase membrane has been studied. These membranes are composed of conductive solid and conductive liquid phases that have the ability to selectively permeate CO2 by forming carbonate ions that diffuse through the membrane at high temperature. The driving force for transport through the membrane is a CO2 partial pressure gradient. The membrane provides a theoretically infinite selectivity. To address stability of the ceramic-carbonate dual-phase membrane for CO2 capture at high temperature, the ceramic phase of the membrane was studied and replaced with materials previously shown to be stable in harsh conditions. The permeation properties and stability of La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF)-carbonate, La0.85Ce0.1Ga0.3Fe0.65Al0.05O3-δ (LCGFA)-carbonate, and Ce0.8Sm0.2O1.9 (SDC)-carbonate membranes were examined under a wide range of experimental conditions at high temperature. LSCF-carbonate membranes were shown to be unstable without the presence of O2 due to reaction of CO2 with the ceramic phase. In the presence of O2, however, the membranes showed stable permeation behavior for more than one month at 900oC. LCGFA-carbonate membranes showed great chemical and permeation stability in the presence of various conditions including exposure to CH4 and H2, however, the permeation performance was quite low when compared to membranes in the literature. Finally, SDC-carbonate membranes showed great chemical and permeation stability both in a CO2:N2 environment for more than two weeks at 900oC as well as more than one month of exposure to simulated syngas conditions at 700oC. Ceramic phase chemical stability increased in the order of LSCF < LCGFA < SDC while permeation performance increased in the order of LCGFA < LSCF < SDC.
ContributorsNorton, Tyler (Author) / Lin, Jerry Y.S. (Thesis advisor) / Alford, Terry (Committee member) / Lind, Mary Laura (Committee member) / Smith, David (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2013
150889-Thumbnail Image.png
Description
Pb-free solder joints are commonly used as interconnects in semiconductor packaging. One of the major defects affecting the mechanical performance of solder joints are reflow pores that form during processing. These pores exhibit significant variability in size and distribution, and understanding the effects of pore geometry on failure is an

Pb-free solder joints are commonly used as interconnects in semiconductor packaging. One of the major defects affecting the mechanical performance of solder joints are reflow pores that form during processing. These pores exhibit significant variability in size and distribution, and understanding the effects of pore geometry on failure is an important reliability concern. In this thesis, the pore microstructures of solder joint samples and the localized plastic deformation around individual pores was characterized in 3D using lab scale X-ray Microtomography. To observe the deformation of a solder joint in 3D, a solder joint was imaged with Microtomography after reflow and then deformed in shear in several loading steps with additional tomography data taken between each. The 3D tomography datasets were then segmented using the 3D Livewire technique into regions corresponding to solder and pores, and used to generate 3D models of the joint at each strain value using Mimics software. The extent of deformation of individual pores in the joint as a function of strain was quantified using sphericity measurements, and correlated with the observed cracking in the joint. In addition, the error inherent in the data acquisition and 3D modeling process was also quantified. The progression of damage observed with X-ray Microtomography was then used to validate the deformation and failure predicted by a Finite Element (FE) simulation. The FE model was based on the as-reflowed tomography data, and incorporated a ductile damage failure model to simulate fracture. Using the measured sphericity change and cracking information obtained from the tomography data, the FE model is shown to correctly capture the broad plastic deformation and strain localization seen in the actual joint, as well as the crack propagation. Lastly, Digital Image Correlation was investigated as a method of obtaining improved local strain measurements in 3D. This technique measures the displacement of the inherent microstructural features of the joint, and can give localized strain measurements that can be directly comparable to that predicted by modeling. The technique is demonstrated in 2D on Pb-Sn solder, and example 3D data is presented for future analysis.
ContributorsPadilla, Erick (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
150870-Thumbnail Image.png
Description
Soft magnetic alloys play a significant role for magnetic recording applications and highly sensitivity magnetic field sensors. In order to sustain the magnetic areal density growth, development of new synthesis techniques and materials is necessary. In this work, the effect of oxygen incorporation during electrodeposition of CoFe alloys on magnetic

Soft magnetic alloys play a significant role for magnetic recording applications and highly sensitivity magnetic field sensors. In order to sustain the magnetic areal density growth, development of new synthesis techniques and materials is necessary. In this work, the effect of oxygen incorporation during electrodeposition of CoFe alloys on magnetic properties, magnetoresistance and structural properties has been studied. Understanding the magnetic properties often required knowledge of oxygen distribution and structural properties of the grown films. Transmission electron microscopy (TEM) was a powerful tool in this study to correlate the oxygen-distribution nanostructure to the magnetic properties of deposited films. Off-axis electron holography in TEM was used to measure magnetic domain wall width in the deposited films. Elemental depth profiles of Fe, Co, O were investigated by secondary ion mass spectroscopy (SIMS). Magnetic properties have been determined by superconducting quantum interference device (SQUID) measurements. Oxygen content in the CoFe deposited films was controlled by electrolyte composition. Films were deposited on Si 100 substrates and on other substrates such as Cu and Al. However, a good film quality was achieved on Si substrate. Electron energy loss and x-ray spectroscopies showed that the low oxygen films contained intragranular Fe2+ oxide (FeO) particles and that the high oxygen films contained intergranular Fe3+ (Fe2O3) along grain boundaries. The films with oxide present at the grain boundary had significantly increased coercivity, magnetoresistance and reduced saturation magnetization relative to the lower oxygen content films with intragranular oxide. The differences in magnetic properties between low oxygen and high oxygen concentration films were attributed to stronger mobile domain wall interactions with the grain boundary oxide layers. The very high magnetoresistance values were achieved for magnetic devices with nanocontact dimension < 100 nm and oxide incorporation in this nanoconfined geometry. The content of oxide phase in nanocontact was controlled by concentration of the Fe3+ ions in the electrodeposition solution. Magnetic device integrity was improved by varying amount of additive into plating solution. These results indicated that electrodeposited CoFe nanocontact is a novel class of materials with large application for magnetic field sensors.
ContributorsElhalawaty, Shereen (Author) / Carpenter, Ray (Thesis advisor) / Chamberlin, Ralph (Committee member) / McCartney, Martha (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2012
150722-Thumbnail Image.png
Description
In 2022, integrated circuit interconnects will approach 10 nm and the diffusion barrier layers needed to ensure long lasting devices will be at 1 nm. This dimension means the interconnect will be dominated by the interface and it has been shown the interface is currently eroding device performance. The standard

In 2022, integrated circuit interconnects will approach 10 nm and the diffusion barrier layers needed to ensure long lasting devices will be at 1 nm. This dimension means the interconnect will be dominated by the interface and it has been shown the interface is currently eroding device performance. The standard interconnect system has three layers - a Copper metal core, a Tantalum Adhesion layer and a Tantalum Nitride Diffusion Barrier Layer. An alternate interconnect schema is a Tantalum Nitride barrier layer and Silver as a metal. The adhesion layer is removed from the system along with changing to an alternate, low resistivity metal. First principles are used to assess the interface of the Silver and Tantalum Nitride. Several stoichiometric 1:1 Tantalum Nitride polymorphs are assessed and it is found that the Fe2P crystal structure is actually the most stable crystal structure which is at odds with the published phase diagram for ambient crystal structure. The surface stability of Fe2P-TaN is assessed and the absorption enthalpy of Silver adatoms is calculated. Finally, the thermodynamic stability of the TaN-Ag interconnect system is assessed.
ContributorsGrumski, Michael (Author) / Adams, James (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2012
150508-Thumbnail Image.png
Description
The goal of this work is to develop low cost and highly efficient hybrid solar cells based on semiconductor nanoparticles (NPs). Hybrid solar cells have been demonstrated to take advantages of both inorganic and organic semiconductors by employing simple soluble process. In order to improve the power conversion efficiency (PCE),

The goal of this work is to develop low cost and highly efficient hybrid solar cells based on semiconductor nanoparticles (NPs). Hybrid solar cells have been demonstrated to take advantages of both inorganic and organic semiconductors by employing simple soluble process. In order to improve the power conversion efficiency (PCE), the bulk heterojunction (BHJ) of cadmium selenide (CdSe) tetrapods (TPs) and poly (3-hexylthiophene) (P3HT) are introduced as an electron acceptor and donor, respectively. The dimension of CdSe TPs and the 3D spatial distribution of CdSe TPs:P3HT photoactive blends are investigated to improve optical and electrical properties of photovoltaic devices. Hybrid solar cells having long-armed CdSe TPs and P3HT establish higher PCE of 1.12% when compared to device employing short-armed TPs of 0.80%. The device performance are improved by using longer armed CdSe TPs, which aids in better percolation connectivity and reduced charge hopping events, thus leading to better charge transport. The device architecture of hybrid solar cells is examined to assist vertical phase separation (VPS). Improvement of VPS in hybrid solar cells using CdSe TPs:P3HT photoactive blends is systematically manipulated by solution processed interfacial layers, resulting in enhanced device performance. Multi-layered hybrid solar cells assist better light absorption, efficient charge carrier transport, and increase of the surface contact area. In this work, hole transport assisting layer (HTAL)/BHJ photoactive layer (BPL)/electron transport assisting layer (ETAL) or HTAL/BPL/ETAL (HBE) multi-layered structure is introduced, similarly to p-type layer/intermixed photoactive layer
-type layer (p-i-n) structure of organic photovoltaic devices. To further control the improvement of the device performance, the effects of nano-scale morphology from solvents having different boiling points, the various shapes of semiconductor NPs, and the emergence of blending NPs are demonstrated. The formation of favorable 3D networks in photoactive layer is attributed to enhance the efficient charge transport by the optimized combination of semiconductor NPs in polymer matrix.
ContributorsLee, Kyu Sung (Author) / Jabbour, Ghassan E. (Thesis advisor) / Alford, Terry (Thesis advisor) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
151170-Thumbnail Image.png
Description
Cancer claims hundreds of thousands of lives every year in US alone. Finding ways for early detection of cancer onset is crucial for better management and treatment of cancer. Thus, biomarkers especially protein biomarkers, being the functional units which reflect dynamic physiological changes, need to be discovered. Though important, there

Cancer claims hundreds of thousands of lives every year in US alone. Finding ways for early detection of cancer onset is crucial for better management and treatment of cancer. Thus, biomarkers especially protein biomarkers, being the functional units which reflect dynamic physiological changes, need to be discovered. Though important, there are only a few approved protein cancer biomarkers till date. To accelerate this process, fast, comprehensive and affordable assays are required which can be applied to large population studies. For this, these assays should be able to comprehensively characterize and explore the molecular diversity of nominally "single" proteins across populations. This information is usually unavailable with commonly used immunoassays such as ELISA (enzyme linked immunosorbent assay) which either ignore protein microheterogeneity, or are confounded by it. To this end, mass spectrometric immuno assays (MSIA) for three different human plasma proteins have been developed. These proteins viz. IGF-1, hemopexin and tetranectin have been found in reported literature to show correlations with many diseases along with several carcinomas. Developed assays were used to extract entire proteins from plasma samples and subsequently analyzed on mass spectrometric platforms. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric techniques where used due to their availability and suitability for the analysis. This resulted in visibility of different structural forms of these proteins showing their structural micro-heterogeneity which is invisible to commonly used immunoassays. These assays are fast, comprehensive and can be applied in large sample studies to analyze proteins for biomarker discovery.
ContributorsRai, Samita (Author) / Nelson, Randall (Thesis advisor) / Hayes, Mark (Thesis advisor) / Borges, Chad (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2012
136115-Thumbnail Image.png
Description
Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley

Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley rats were fed diets consisting of CHOW or low fat (LF), High Fat Diet and High Fat Diet (HFD) with supplementary Canola Oil (Monounsaturated fat). These rats were given these diets at 4-5 weeks old and given intraperitoneal and oral glucose tolerance tests(IPGTT; OGTT) at 4 and 8 weeks to further understand glucose and insulin behavior under different treatments. (IPGTT: LF-n=14, HFD-n=16, HFD+CAN-n=12; OGTT: LF-n=8, HFD-n=8, HFD+CAN-n=6). Results: When comparing LF fed rats at 8 weeks with 4 week glucose challenge test, area under the curve (AUC) of glucose was 1.2 that of 4 weeks. At 8 weeks, HFD fed rats AUCg was much greater than LF fed rats under both IPGTT and OGTT. When supplemented with Canola oil, HFD fed rats AUC returned to LF data range. Despite the alleviating glucose homeostasis affects of Canola oil the AUC of insulin curve, which was elevated by HFD, remained high. Conclusion: HFD in maturing rats elevates fasting insulin levels, increases insulin resistance and lowers glucose homeostasis. When given a monounsaturated fatty acid (MUFA) supplement fasting hyperinsulinemia, and late hyperinsulinemia still occur though glucose homeostasis is regained. For OGTT HFD also induced late hyper c-peptide levels and compared to LF and HFD+CAN, a higher c-peptide level over time.
ContributorsRay, Tyler John (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Towner, Kali (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136566-Thumbnail Image.png
Description
Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method

Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method proposed to screen and detect lung cancer, eliminating the risks associated with LDCT scans. Known and blinded primary blood sera from participants with lung cancer and no cancer were run on peptide microarrays and analyzed. Immunosignatures for each known sample collectively indicated 120 peptides unique to lung cancer and non-cancer participants. These 120 peptides were used to determine the status of the blinded samples. Verification of the results from Vanderbilt is pending.
ContributorsNguyen, Geneva Trieu (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05
136072-Thumbnail Image.png
Description
The prospect of anti-aging or life extension technology is controversial in biogerentology but deemed even by skeptical experts to warrant discussion. I discuss the justifications that the probability of life extension technology being developed in the near future is reasonably high and that this research justifies the time and money

The prospect of anti-aging or life extension technology is controversial in biogerentology but deemed even by skeptical experts to warrant discussion. I discuss the justifications that the probability of life extension technology being developed in the near future is reasonably high and that this research justifies the time and money it receives. I investigate potential ethical and societal issues anti-aging technology might create. This paper addresses inequality of access, economic cost, changes in quality of life, the role of death in human life, if and how the technology should be regulated and how parties who choose not to undergo treatment can be fairly treated, even when they are a minority.
Created2015-05