Matching Items (189)
149707-Thumbnail Image.png
Description
Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.
ContributorsAnderson, Matthew Brandon (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Rege, Kaushal (Committee member) / Anderson, James (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
150348-Thumbnail Image.png
Description
Demands in file size and transfer rates for consumer-orientated products have escalated in recent times. This is primarily due to the emergence of high definition video content. Now factor in the consumer desire for convenience, and we find that wireless service is the most desired approach for inter-connectivity. Consumers expect

Demands in file size and transfer rates for consumer-orientated products have escalated in recent times. This is primarily due to the emergence of high definition video content. Now factor in the consumer desire for convenience, and we find that wireless service is the most desired approach for inter-connectivity. Consumers expect wireless service to emulate wired service with little to virtually no difference in quality of service (QoS). The background section of this document examines the QoS requirements for wireless connectivity of high definition video applications. I then proceed to look at proposed solutions at the physical (PHY) and the media access control (MAC) layers as well as cross-layer schemes. These schemes are subsequently are evaluated in terms of usefulness in a multi-gigabit, 60 GHz wireless multimedia system targeting the average consumer. It is determined that a substantial gap in published literature exists pertinent to this application. Specifically, little or no work has been found that shows how an adaptive PHYMAC cross-layer solution that provides real-time compensation for varying channel conditions might be actually implemented. Further, no work has been found that shows results of such a model. This research proposes, develops and implements in Matlab code an alternate cross-layer solution that will provide acceptable QoS service for multimedia applications. Simulations using actual high definition video sequences are used to test the proposed solution. Results based on the average PSNR metric show that a quasi-adaptive algorithm provides greater than 7 dB of improvement over a non-adaptive approach while a fully-adaptive alogrithm provides over18 dB of improvement. The fully adaptive implementation has been conclusively shown to be superior to non-adaptive techniques and sufficiently superior to even quasi-adaptive algorithms.
ContributorsBosco, Bruce (Author) / Reisslein, Martin (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
Description
Fiber-Wireless (FiWi) network is the future network configuration that uses optical fiber as backbone transmission media and enables wireless network for the end user. Our study focuses on the Dynamic Bandwidth Allocation (DBA) algorithm for EPON upstream transmission. DBA, if designed properly, can dramatically improve the packet transmission delay and

Fiber-Wireless (FiWi) network is the future network configuration that uses optical fiber as backbone transmission media and enables wireless network for the end user. Our study focuses on the Dynamic Bandwidth Allocation (DBA) algorithm for EPON upstream transmission. DBA, if designed properly, can dramatically improve the packet transmission delay and overall bandwidth utilization. With new DBA components coming out in research, a comprehensive study of DBA is conducted in this thesis, adding in Double Phase Polling coupled with novel Limited with Share credits Excess distribution method. By conducting a series simulation of DBAs using different components, we found out that grant sizing has the strongest impact on average packet delay and grant scheduling also has a significant impact on the average packet delay; grant scheduling has the strongest impact on the stability limit or maximum achievable channel utilization. Whereas the grant sizing only has a modest impact on the stability limit; the SPD grant scheduling policy in the Double Phase Polling scheduling framework coupled with Limited with Share credits Excess distribution grant sizing produced both the lowest average packet delay and the highest stability limit.
ContributorsZhao, Du (Author) / Reisslein, Martin (Thesis advisor) / McGarry, Michael (Committee member) / Fowler, John (Committee member) / Arizona State University (Publisher)
Created2011
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149848-Thumbnail Image.png
Description
With tremendous increase in the popularity of networked multimedia applications, video data is expected to account for a large portion of the traffic on the Internet and more importantly next-generation wireless systems. To be able to satisfy a broad range of customers requirements, two major problems need to be solved.

With tremendous increase in the popularity of networked multimedia applications, video data is expected to account for a large portion of the traffic on the Internet and more importantly next-generation wireless systems. To be able to satisfy a broad range of customers requirements, two major problems need to be solved. The first problem is the need for a scalable representation of the input video. The recently developed scalable extension of the state-of-the art H.264/MPEG-4 AVC video coding standard, also known as H.264/SVC (Scalable Video Coding) provides a solution to this problem. The second problem is that wireless transmission medium typically introduce errors in the bit stream due to noise, congestion and fading on the channel. Protection against these channel impairments can be realized by the use of forward error correcting (FEC) codes. In this research study, the performance of scalable video coding in the presence of bit errors is studied. The encoded video is channel coded using Reed Solomon codes to provide acceptable performance in the presence of channel impairments. In the scalable bit stream, some parts of the bit stream are more important than other parts. Parity bytes are assigned to the video packets based on their importance in unequal error protection scheme. In equal error protection scheme, parity bytes are assigned based on the length of the message. A quantitative comparison of the two schemes, along with the case where no channel coding is employed is performed. H.264 SVC single layer video streams for long video sequences of different genres is considered in this study which serves as a means of effective video characterization. JSVM reference software, in its current version, does not support decoding of erroneous bit streams. A framework to obtain H.264 SVC compatible bit stream is modeled in this study. It is concluded that assigning of parity bytes based on the distribution of data for different types of frames provides optimum performance. Application of error protection to the bit stream enhances the quality of the decoded video with minimal overhead added to the bit stream.
ContributorsSundararaman, Hari (Author) / Reisslein, Martin (Thesis advisor) / Seeling, Patrick (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011
149858-Thumbnail Image.png
Description
This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large,

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.
ContributorsZhou, Zhibin (Author) / Huang, Dijiang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ahn, Gail-Joon (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2011
150255-Thumbnail Image.png
Description
Thin films of ever reducing thickness are used in a plethora of applications and their performance is highly dependent on their microstructure. Computer simulations could then play a vital role in predicting the microstructure of thin films as a function of processing conditions. FACET is one such software tool designed

Thin films of ever reducing thickness are used in a plethora of applications and their performance is highly dependent on their microstructure. Computer simulations could then play a vital role in predicting the microstructure of thin films as a function of processing conditions. FACET is one such software tool designed by our research group to model polycrystalline thin film growth, including texture evolution and grain growth of polycrystalline films in 2D. Several modifications to the original FACET code were done to enhance its usability and accuracy. Simulations of sputtered silver thin films are presented here with FACET 2.0 with qualitative and semi-quantitative comparisons with previously published experimental results. Comparisons of grain size, texture and film thickness between simulations and experiments are presented which describe growth modes due to various deposition factors like flux angle and substrate temperature. These simulations provide reasonable agreement with the experimental data over a diverse range of process parameters. Preliminary experiments in depositions of Silver films are also attempted with varying substrates and thickness in order to generate complementary experimental and simulation studies of microstructure evolution. Overall, based on the comparisons, FACET provides interesting insights into thin film growth processes, and the effects of various deposition conditions on thin film structure and microstructure. Lastly, simple molecular dynamics simulations of deposition on bi-crystals are attempted for gaining insight into texture based grain competition during film growth. These simulations predict texture based grain coarsening mechanisms like twinning and grain boundary migration that have been commonly reported in FCC films.
ContributorsRairkar, Asit (Author) / Adams, James B (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2011
151690-Thumbnail Image.png
Description
Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems.

Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems. In particular, the focus is on an information theoretic analysis for P2P systems with synchronization errors and developing new signaling solutions for several asynchronous cooperative communication systems. The first part of the dissertation presents several bounds on the capacity of the P2P systems with synchronization errors. First, binary insertion and deletion channels are considered where lower bounds on the mutual information between the input and output sequences are computed for independent uniformly distributed (i.u.d.) inputs. Then, a channel suffering from both synchronization errors and additive noise is considered as a serial concatenation of a synchronization error-only channel and an additive noise channel. It is proved that the capacity of the original channel is lower bounded in terms of the synchronization error-only channel capacity and the parameters of both channels. On a different front, to better characterize the deletion channel capacity, the capacity of three independent deletion channels with different deletion probabilities are related through an inequality resulting in the tightest upper bound on the deletion channel capacity for deletion probabilities larger than 0.65. Furthermore, the first non-trivial upper bound on the 2K-ary input deletion channel capacity is provided by relating the 2K-ary input deletion channel capacity with the binary deletion channel capacity through an inequality. The second part of the dissertation develops two new relaying schemes to alleviate asynchronism issues in cooperative communications. The first one is a single carrier (SC)-based scheme providing a spectrally efficient Alamouti code structure at the receiver under flat fading channel conditions by reducing the overhead needed to overcome the asynchronism and obtain spatial diversity. The second one is an orthogonal frequency division multiplexing (OFDM)-based approach useful for asynchronous cooperative systems experiencing excessive relative delays among the relays under frequency-selective channel conditions to achieve a delay diversity structure at the receiver and extract spatial diversity.
ContributorsRahmati, Mojtaba (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2013
151596-Thumbnail Image.png
Description
Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10-9 - 10-10 cm-3

Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10-9 - 10-10 cm-3 in a simple, contactless room temperature measurement. However in practice, recombination lifetime τr measurements such as photoconductance decay (PCD) and surface photovoltage (SPV) that are widely used for characterization of bulk wafers face serious limitations when applied to thin epitaxial layers, where the layer thickness is smaller than the minority carrier diffusion length Ln. Other methods such as microwave photoconductance decay (µ-PCD), photoluminescence (PL), and frequency-dependent SPV, where the generated excess carriers are confined to the epitaxial layer width by using short excitation wavelengths, require complicated configuration and extensive surface passivation processes that make them time-consuming and not suitable for process screening purposes. Generation lifetime τg, typically measured with pulsed MOS capacitors (MOS-C) as test structures, has been shown to be an eminently suitable technique for characterization of thin epitaxial layers. It is for these reasons that the IC community, largely concerned with unipolar MOS devices, uses lifetime measurements as a "process cleanliness monitor." However when dealing with ultraclean epitaxial wafers, the classic MOS-C technique measures an effective generation lifetime τg eff which is dominated by the surface generation and hence cannot be used for screening impurity densities. I have developed a modified pulsed MOS technique for measuring generation lifetime in ultraclean thin p/p+ epitaxial layers which can be used to detect metallic impurities with densities as low as 10-10 cm-3. The widely used classic version has been shown to be unable to effectively detect such low impurity densities due to the domination of surface generation; whereas, the modified version can be used suitably as a metallic impurity density monitoring tool for such cases.
ContributorsElhami Khorasani, Arash (Author) / Alford, Terry (Thesis advisor) / Goryll, Michael (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2013
151848-Thumbnail Image.png
Description
ABSTRACT Along with the fast development of science and technology, the studied materials are becoming more complicated and smaller. All these achievements have advanced with the fast development of powerful tools currently, such as Scanning electron microscopy (SEM), Focused Ion Beam (FIB), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy

ABSTRACT Along with the fast development of science and technology, the studied materials are becoming more complicated and smaller. All these achievements have advanced with the fast development of powerful tools currently, such as Scanning electron microscopy (SEM), Focused Ion Beam (FIB), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDX), Electron energy loss spectroscopy (EELS) and so on. SiTiO3 thin film, which is grown on Si (100) single crystals, attracts a lot of interest in its structural and electronic properties close to its interface. Valence EELS is used to investigate the Plasmon excitations of the ultrathin SrTiO3 thin film which is sandwiched between amorphous Si and crystalline Si layers. On the other hand, theoretical simulations based on dielectric functions have been done to interpret the experimental results. Our findings demonstrate the value of valence electron energy-loss spectroscopy in detecting a local change in the effective electron mass. Recently it is reported that ZnO-LiYbO2 hybrid phosphor is an efficient UV-infrared convertor for silicon solar cell but the mechanism is still not very clear. The microstructure of Li and Yb co-doped ZnO has been studied by SEM and EDX, and our results suggest that a reaction (or diffusion) zone is very likely to exist between LiYbO2 and ZnO. Such diffusion regions may be responsible for the enhanced infrared emission in the Yb and Li co-doped ZnO. Furthermore, to help us study the diffusion zone under TEM in future, the radiation damage on synthesized LiYbO2 has been studied at first, and then the electronic structure of the synthesized LiYbO2 is compared with Yb2O3 experimentally and theoretically, by EELS and FEFF8 respectively.
ContributorsYang, Bo (Author) / Alford, Terry (Thesis advisor) / Jiang, Nan (Committee member) / Theodore, N. David (Committee member) / Arizona State University (Publisher)
Created2013