Matching Items (2)
Filtering by

Clear all filters

137559-Thumbnail Image.png
Description
Serge Galams voting systems and public debate models are used to model voting behaviors of two competing opinions in democratic societies. Galam assumes that individuals in the population are independently in favor of one opinion with a fixed probability p, making the initial number of that type of opinion a

Serge Galams voting systems and public debate models are used to model voting behaviors of two competing opinions in democratic societies. Galam assumes that individuals in the population are independently in favor of one opinion with a fixed probability p, making the initial number of that type of opinion a binomial random variable. This analysis revisits Galams models from the point of view of the hypergeometric random variable by assuming the initial number of individuals in favor of an opinion is a fixed deterministic number. This assumption is more realistic, especially when analyzing small populations. Evolution of the models is based on majority rules, with a bias introduced when there is a tie. For the hier- archical voting system model, in order to derive the probability that opinion +1 would win, the analysis was done by reversing time and assuming that an individual in favor of opinion +1 wins. Then, working backwards we counted the number of configurations at the next lowest level that could induce each possible configuration at the level above, and continued this process until reaching the bottom level, i.e., the initial population. Using this method, we were able to derive an explicit formula for the probability that an individual in favor of opinion +1 wins given any initial count of that opinion, for any group size greater than or equal to three. For the public debate model, we counted the total number of individuals in favor of opinion +1 at each time step and used this variable to define a random walk. Then, we used first-step analysis to derive an explicit formula for the probability that an individual in favor of opinion +1 wins given any initial count of that opinion for group sizes of three. The spatial public debate model evolves based on the proportional rule. For the spatial model, the most natural graphical representation to construct the process results in a model that is not mathematically tractable. Thus, we defined a different graphical representation that is mathematically equivalent to the first graphical representation, but in this model it is possible to define a dual process that is mathematically tractable. Using this graphical representation we prove clustering in 1D and 2D and coexistence in higher dimensions following the same approach as for the voter model interacting particle system.
ContributorsTaylor, Nicole Robyn (Co-author) / Lanchier, Nicolas (Co-author, Thesis director) / Smith, Hal (Committee member) / Hurlbert, Glenn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
141499-Thumbnail Image.png
Description

Graph pebbling is a network optimization model for transporting discrete resources that are consumed in transit: the movement of 2 pebbles across an edge consumes one of the pebbles. The pebbling number of a graph is the fewest number of pebbles t so that, from any initial configuration of t

Graph pebbling is a network optimization model for transporting discrete resources that are consumed in transit: the movement of 2 pebbles across an edge consumes one of the pebbles. The pebbling number of a graph is the fewest number of pebbles t so that, from any initial configuration of t pebbles on its vertices, one can place a pebble on any given target vertex via such pebbling steps. It is known that deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter 2 graphs, and that deciding whether the pebbling number has a prescribed upper bound is Π[P over 2]-complete. On the other hand, for many families of graphs there are formulas or polynomial algorithms for computing pebbling numbers; for example, complete graphs, products of paths (including cubes), trees, cycles, diameter 2 graphs, and more. Moreover, graphs having minimum pebbling number are called Class 0, and many authors have studied which graphs are Class 0 and what graph properties guarantee it, with no characterization in sight. In this paper we investigate an important family of diameter 3 chordal graphs called split graphs; graphs whose vertex set can be partitioned into a clique and an independent set. We provide a formula for the pebbling number of a split graph, along with an algorithm for calculating it that runs in O(n[superscript β]) time, where β = 2ω/(ω + 1) [= over ∼] 1.41 and ω [= over ∼] 2.376 is the exponent of matrix multiplication. Furthermore we determine that all split graphs with minimum degree at least 3 are Class 0.

ContributorsAlcon, Liliana (Author) / Gutierrez, Marisa (Author) / Hurlbert, Glenn (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30