Matching Items (225)
Filtering by

Clear all filters

150947-Thumbnail Image.png
Description
Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have

Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have written a "1.5-D" radiative transfer code to calculate disk temperatures assuming hydrostatic and radiative equilibrium. The model solves for the temperature at all locations simultaneously using Rybicki's method, converges rapidly at high optical depth, and retains full frequency dependence. The likely cause of accretional heating in PPDs is the magnetorotational instability (MRI), which acts where gas ionization is sufficiently high for gas to couple to the magnetic field. This will occur in surface layers of the disk, leaving the interior portions of the disk inactive ("dead zone"). I calculate temperatures in PPDs undergoing such "layered accretion." Since the accretional heating is concentrated far from the midplane, temperatures in the disk's interior are lower than in PPDs modeled with vertically uniform accretion. The method is used to study for the first time disks evolving via the magnetorotational instability, which operates primarily in surface layers. I find that temperatures in layered accretion disks do not significantly differ from those of "passive disks," where no accretional heating exists. Emergent spectra are insensitive to active layer thickness, making it difficult to observationally identify disks undergoing layered vs. uniform accretion. I also calculate the ionization chemistry in PPDs, using an ionization network including multiple charge states of dust grains. Combined with a criterion for the onset of the MRI, I calculate where the MRI can be initiated and the extent of dead zones in PPDs. After accounting for feedback between temperature and active layer thickness, I find the surface density of the actively accreting layers falls rapidly with distance from the protostar, leading to a net outward flow of mass from ~0.1 to 3 AU. The clearing out of the innermost zones is possibly consistent with the observed behavior of recently discovered "transition disks."
ContributorsLesniak, Michael V., III (Author) / Desch, Steven J. (Thesis advisor) / Scannapieco, Evan (Committee member) / Timmes, Francis (Committee member) / Starrfield, Sumner (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
150778-Thumbnail Image.png
Description
This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements

This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements presented here for the nuclei Chlorine ( 35Cl) and Aluminum ( 27Al ) are part of a program with the ultimate goal of measuring the asymmetry in the angular distribution of gamma rays emitted in the capture of neutrons on protons, with a precision better than 10-8, in order to extract the weak hadronic coupling constant due to pion exchange interaction with isospin change equal with one ( hπ 1). Based on theoretical calculations asymmetry in the angular distribution of the gamma rays from neutron capture on protons has an estimated size of 5·10-8. This implies that the Al parity violation asymmetry and its uncertainty have to be known with a precision smaller than 4·10-8. The proton target is liquid Hydrogen (H2) contained in an Aluminum vessel. Results are presented for parity violation and parity-conserving asymmetries in Chlorine and Aluminum. The systematic and statistical uncertainties in the calculation of the parity-violating and parity-conserving asymmetries are discussed.
ContributorsBalascuta, Septimiu (Author) / Alarcon, Ricardo (Thesis advisor) / Belitsky, Andrei (Committee member) / Doak, Bruce (Committee member) / Comfort, Joseph (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
148137-Thumbnail Image.png
Description

This thesis looks at how Latinx communities in Wyoming, despite recognizing the impossibility of overcoming the traditional conservative autocracy, still utilize their identity as a political response to unify Latinx communities throughout the state. The project draws from oral histories conducted with Latinx/Chicanx community members in Wyoming, including professors, legislators,

This thesis looks at how Latinx communities in Wyoming, despite recognizing the impossibility of overcoming the traditional conservative autocracy, still utilize their identity as a political response to unify Latinx communities throughout the state. The project draws from oral histories conducted with Latinx/Chicanx community members in Wyoming, including professors, legislators, and everyday citizens.

ContributorsFranco, David (Author) / Fonseca-Chávez, Vanessa (Thesis director) / Martínez, Rafael (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147638-Thumbnail Image.png
Description

The United States’ War on Drugs declared in 1971 by President Richard Nixon and revamped by President Reagan in the 1980s has been an objectively failed initiative with origins based in racism and oppression. After exploring the repercussions of this endeavor for societies and individuals around the world, global researchers

The United States’ War on Drugs declared in 1971 by President Richard Nixon and revamped by President Reagan in the 1980s has been an objectively failed initiative with origins based in racism and oppression. After exploring the repercussions of this endeavor for societies and individuals around the world, global researchers and policymakers have declared that the policies and institutions created to fight the battle have left devastation in their wake. Despite high economic and social costs, missed opportunities in public health and criminal justice sectors, and increasing limits on our personal freedoms, all the measures taken to eradicate drug abuse and trafficking have been unsuccessful. Not only that, but militarized police tactics, mass incarceration, and harsh penalties that stifle opportunities for rehabilitation, growth, and change disproportionately harm poor and minority communities. <br/>Because reform in U.S. drug policy is badly needed, the goals of America’s longest war need to be reevaluated, implications of the initiative reexamined, and alternative strategies reconsidered. Solutions must be propagated from a diverse spectrum of contributors and holistic understanding through scientific research, empirical evidence, innovation, public health, social wellbeing, and measurable outcomes. But before we can know where we should be headed, we need to appreciate how we got to where we are. This preliminary expository investigation will explore and outline the history of drug use and prohibition in the United States before the War on Drugs was officially declared. Through an examination of the different patterns of substance use, evolving civil tolerance of users, racially-charged anti-drug misinformation/propaganda campaigns, and increasingly restrictive drug control policies, a foundation for developing solutions and strengths-based strategies for drug reform will emerge.

ContributorsSherman, Brooke (Author) / Jimenez-Arista, Laura (Thesis director) / Mitchell, Ojmarrh (Committee member) / College of Integrative Sciences and Arts (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147752-Thumbnail Image.png
Description

I conducted a literature review of articles pertaining to the history and treatment of rats. After outlining all of the relevant connections, I argue that as a result of people's conceptions about rats, rats do not receive the same respect and protections afforded other animals, such as cats and dogs,

I conducted a literature review of articles pertaining to the history and treatment of rats. After outlining all of the relevant connections, I argue that as a result of people's conceptions about rats, rats do not receive the same respect and protections afforded other animals, such as cats and dogs, in the laboratory and beyond. I present both negative and positive conceptions about rats and the realities of these conceptions. Finally, I talk about the changes that need to take place in laboratory research, why animals are still used in research today, and the alternatives that exist to animal models.

Created2021-05
147537-Thumbnail Image.png
Description

Urban encroachment into traditional snake territories has long been underway; likely increasing snake sightings in urban neighborhoods. With increasing overlap, I ask if the perceptions of snakes are actually influencing urban residents to say that snakes are a significant problem in their neighborhood today? I was interested in finding out

Urban encroachment into traditional snake territories has long been underway; likely increasing snake sightings in urban neighborhoods. With increasing overlap, I ask if the perceptions of snakes are actually influencing urban residents to say that snakes are a significant problem in their neighborhood today? I was interested in finding out whether or not there would be a positive correlation between the perception of snakes being a problem within a neighborhood and the actual number of sightings recorded. To address this, I used survey responses from 2017 regarding the risk perception of snakes from twelve neighborhoods within Maricopa County. These responses were then compared to the number of snake sightings within those same neighborhoods over a span of ten years using community science data from iNaturalist. The average results of the people who took the survey perceived that snakes were not a problem in their neighborhood. It was also found that in the outlying areas closer to natural snake habitat (desert preserves), a positive correlation between a higher survey response and a higher number of snake sightings could be seen. Overall, the conclusion of the data revealed that the perceptions of residents did not align with the actual number of snake sightings.

ContributorsMiranda, Caroline (Author) / Bateman, Heather (Thesis director) / Brown, Jeffrey (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147543-Thumbnail Image.png
Description

The following is a review of the literature on Equine Assisted Psychotherapy (EAP) as a potential treatment for US service members with Post-Traumatic Stress Disorder(PTSD). EAP is a relatively new and undeclared psychotherapeutic technique that presents limitless opportunities for holistic growth in patients who have Post-Traumatic Stress Disorder (PTSD)

The following is a review of the literature on Equine Assisted Psychotherapy (EAP) as a potential treatment for US service members with Post-Traumatic Stress Disorder(PTSD). EAP is a relatively new and undeclared psychotherapeutic technique that presents limitless opportunities for holistic growth in patients who have Post-Traumatic Stress Disorder (PTSD) who have not achieved an improvement in their quality of life as a result of other conventional treatments. Due to its heterogenous nature, PTSD directly dismantles the brain’s reward circuitry pathway, altering the individual’s capacity for emotional resolution. For US veterans suffering from PTSD who have not received palpable improvements through traditional talk therapies, EAP is a treatment for emotional vulnerability and communal reintegration when used in conjunction with techniques of attachment theory and cognitive-behavioral theory. Previous studies show an uptick in interpersonal trust and an alleviation of maladaptive defensive mechanisms set in place by the individual to protect the psyche. Research is indicative of an alleviation in overall symptomatology with an emphasis in the rehearsal of therapeutic strategies within interpersonal relationships to rehabilitate social engagement and cognition. Due to the lack of foundational acceptance of EAP thus far as a treatment for PTSD, it is challenging to ascertain a marginalized understanding of the holistic effects of EAP on PTSD as a stand alone psychotherapeutic treatment.

ContributorsThompson, Kylee Shae (Author) / Jimenez, Laura (Thesis director) / Murphree, Julie (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147686-Thumbnail Image.png
Description

When a sports performance is at its peak, it is akin to a musical performance in the sense that each player seems to perform their part effortlessly, creating a rhythmic flow of counterparts all moving as one. Rhythm and timing are vital elements in sports like basketball in which syncopated

When a sports performance is at its peak, it is akin to a musical performance in the sense that each player seems to perform their part effortlessly, creating a rhythmic flow of counterparts all moving as one. Rhythm and timing are vital elements in sports like basketball in which syncopated passing and shooting appear to facilitate accuracy. This study tests if shooting baskets “in rhythm,” as measured by the catch-to-release time, reliably enhances shooting accuracy. It then tests if an “in rhythm” timing is commonly detected and agreed upon by observers, and if observer timing ratings are related to shooting accuracy. Experiment 1 tests the shooting accuracy of two amateur basketball players after different delays between catching a pass and shooting the ball. Shots were taken from the three-point line (180 shots). All shots were recorded and analyzed for accuracy as a function of delay time, and the recordings were used to select stimuli varying in timing intervals for observers to view in Experiment 2. In Experiment 2, 24 observers each reviewed 17 video clips of the shots to test visual judgment of shooting-in-rhythm. The delay times ranged from 0.3 to 3.2 seconds, with a goal of having some of the shots taken too fast, some close to in rhythm, and some too slow. Observers rated if each shot occurs too fast, in rhythm slightly fast, in rhythm slightly slow, or too slow. In Experiment 1, shooters exhibited a significant cubic fit with better shooting performance in the middle of the timing distribution (1.2 sec optimal delay) between catching a pass and shooting. In Experiment, 2 observers reliably judged shots to be in rhythm centered at 1.1 ± 0.2 seconds, which matched the delay that leads to optimal performance for the shooters found in Experiment 1. The pattern of findings confirms and validates that there is a common “in rhythm” catch-to-shoot delay time of a little over 1 second that both optimizes shooter accuracy and is reliably recognized by observers.

ContributorsFlood, Cierra Elizabeth (Author) / McBeath, Michael (Thesis director) / Corbin, William (Committee member) / Department of Psychology (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149377-Thumbnail Image.png
Description
As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for

As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for high energy conversion efficiency in both processes, respectively. The first half of this dissertation discusses the practically achievable energy conversion efficiency limit of solar cells. Since the demonstration of the Si solar cell in 1954, the performance of solar cells has been improved tremendously and recently reached 41.6% energy conversion efficiency. However, it seems rather challenging to further increase the solar cell efficiency. The state-of-the-art triple junction solar cells are analyzed to help understand the limiting factors. To address these issues, the monolithically integrated II-VI and III-V material system is proposed for solar cell applications. This material system covers the entire solar spectrum with a continuous selection of energy bandgaps and can be grown lattice matched on a GaSb substrate. Moreover, six four-junction solar cells are designed for AM0 and AM1.5D solar spectra based on this material system, and new design rules are proposed. The achievable conversion efficiencies for these designs are calculated using the commercial software package Silvaco with real material parameters. The second half of this dissertation studies the semiconductor luminescence refrigeration, which corresponds to over 100% energy usage efficiency. Although cooling has been realized in rare-earth doped glass by laser pumping, semiconductor based cooling is yet to be realized. In this work, a device structure that monolithically integrates a GaAs hemisphere with an InGaAs/GaAs quantum-well thin slab LED is proposed to realize cooling in semiconductor. The device electrical and optical performance is calculated. The proposed device then is fabricated using nine times photolithography and eight masks. The critical process steps, such as photoresist reflow and dry etch, are simulated to insure successful processing. Optical testing is done with the devices at various laser injection levels and the internal quantum efficiency, external quantum efficiency and extraction efficiency are measured.
ContributorsWu, Songnan (Author) / Zhang, Yong-Hang (Thesis advisor) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Belitsky, Andrei (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2010
148393-Thumbnail Image.png
Description

Vaccines are modern medicine’s best way of combating the majority of viral and bacterial illnesses and contagions to date. Thanks to the introduction of vaccines since the first uses of them in 1796 (Jenner’s smallpox vaccine), they have drastically reduced figures of disease worldwide, turning once lethal and life changing

Vaccines are modern medicine’s best way of combating the majority of viral and bacterial illnesses and contagions to date. Thanks to the introduction of vaccines since the first uses of them in 1796 (Jenner’s smallpox vaccine), they have drastically reduced figures of disease worldwide, turning once lethal and life changing conditions into minor annoyances; Some of these afflictions have even become nonexistent or even extinct in certain parts of the world outside of a controlled laboratory setting. With many advancements and overwhelming evidence proving their efficiency, it is clear that vaccines have become nothing less than a necessity for everyday healthcare in today’s world. <br/>The greatest contributor to the creation and evolution of vaccines throughout the years is by far the progress and work done in the field of molecular and cellular biology. These advancements have become the bedrock of modern vaccination, as shown by the differing types of vaccines and their methodology. The most common varieties of vaccines are include ‘dead’ or inactivated vaccines, one such example being the pertussis strain of vaccines, which have either dead or torn apart cells for the body to easily fight off, allowing the immune system to easily and quickly counter the illness; Additionally, there are also live attenuated vaccines (LAVs) in which a weaker version of the pathogen is introduced to the body to stimulate an immune response, or a recombinant mRNA vaccine where mRNA containing the coding for an antigen is presented for immunological response, the latter being what the current COVID-19 vaccines are based on. This is in part aided by the presence of immunological adjuvants, antigens and substances that the immune system can recognize, target, and remember for future infections. However, for more serious illnesses the body needs a bigger threat to analyze, which leads to live vaccines- instead of dead or individual components of a potential pathogen, a weakened version is created in the lab to allow the body to combat it. The idea behind this is the same, but to a larger degree so a more serious illness such as measles, mumps, and rubella (MMR) do not infect us.<br/>However, for the past couple of decades the public’s views on vaccination has greatly varied, with the rise of fear and disinformation leading those to believe that modern medicine is a threat in disguise. The largest of these arguments began in the late 90’s, when Dr. Andrew Wakefield published an article under the Lancet with false information connecting vaccinations to the occurrence of autism in younger children- a theory which has since then been proven incorrect numerous times over. Unfortunately, the rise of hysteria and paranoia in people, along with more misinformation from misleading sources, have strengthened the anti-vaccination cause and has made it into a serious threat to the health of those world-wide.<br/>The aim of this thesis is to provide an accurate and thorough analysis on these three themes- the history of vaccines, their inner workings and machinations in providing immune defenses for the body, and the current controversy of the anti-vaccination movement. Additionally, there will be two other sections going in-depth on two specific areas where vaccination is highly important; The spread and fear of the Human Immunodeficiency Virus (HIV) has been around for nearly four decades, so it begs the question: what makes this such a difficult virus, and how can a vaccine be created to combat it? Additionally, in the last year the world has encountered a new virus that has evolved into a global pandemic, SARS-COV 2. This new strain of coronavirus has shown itself to be highly contagious and rapidly mutating, and the race to quickly develop a vaccine to counteract it has been on-going since its first major infections in Wuhan, China. Overall, this thesis will go in-depth in providing the most accurate, up-to-date, and critical information regarding vaccinations today.

ContributorsKolb Celaya, Connor Emilio (Author) / Topal, Emel (Thesis director) / Huffman, Holly (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05