Matching Items (17)
150316-Thumbnail Image.png
Description
The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been

The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been conducted at Jefferson Lab using a tagged polarized photon beam and a frozen spin polarized target (FROST). The results presented here were taken during the first running period of FROST using the CLAS detector at Jefferson Lab with photon energies ranging from 329 MeV to 2.35 GeV. Data are presented for the E polarization observable for eta meson photoproduction on the proton from threshold (W=1500 MeV) to W=1900 MeV. Comparisons to the partial wave analyses of SAID and Bonn-Gatchina along with the isobar analysis of eta-MAID are made. These results will help distinguish between current theoretical predictions and refine future theories.
ContributorsMorrison, Brian (Author) / Ritchie, Barry (Thesis advisor) / Dugger, Michael (Committee member) / Shovkovy, Igor (Committee member) / Davies, Paul (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2011
136114-Thumbnail Image.png
Description
Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the

Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the use of statistical methods in studying exotic meson candidates is outlined, describing methods and providing preliminary data on their efficacy.
ContributorsPrather, Benjamin Scott (Author) / Ritchie, Barry G. (Thesis director) / Dugger, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
Description

In the quark model, meson states consisting of a quark/anti-quark pair must obey Poincaré symmetry. As a result of that symmetry, for meson total angular momentum J, parity P, and charge conjugation symmetry C, states with JPC= 0--, 0+-, 1-+, 2+-, 3-+, 4+-, … should not be observed. A meson

In the quark model, meson states consisting of a quark/anti-quark pair must obey Poincaré symmetry. As a result of that symmetry, for meson total angular momentum J, parity P, and charge conjugation symmetry C, states with JPC= 0--, 0+-, 1-+, 2+-, 3-+, 4+-, … should not be observed. A meson observed experimentally with such quantum numbers would indicate a so-called “exotic” meson state. Exotic mesons can be multi-quark states like tetraquarks, a combination of two or more gluons known as glueballs, or a hybrid meson (qqg). Theories have suggested that three possible exotic meson states with the 1-+ quantum number: π1, η1, and η‘1,. However, no conclusive evidence for the existence of these three exotic states has been observed. This research will look for new states that decay to K* K final states with an emphasis on exotic mesons. An analysis of K+ K- π0 final states will be presented, where a restriction on the K - π0 invariant mass yields an unexpected enhancement in the K+ K- π0 spectrum.

ContributorsWalker, Patrick J (Author) / Dugger, Michael (Thesis director) / Sukharev, Maxim (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
133498-Thumbnail Image.png
Description
A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the orientation of the spin of the incoming photon and the

A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the orientation of the spin of the incoming photon and the spin of the target proton are useful tools to deconvolve the nucleon resonance spectrum. These observables are particularly sensitive to interference between phases of the complex amplitudes. A set of these observables has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab with linearly-polarized photons having energies from 725 to 1575 MeV with polar angle values of cos(theta) between -0.8 and 0.9 and transversely-polarized protons in the Jefferson Lab FRozen Spin Target (FROST). By fitting neutron yields from gamma p -> pi^+ n over azimuthal scattering angle, the observables \H and P have been extracted. These observables manifest as azimuthal modulations in the yields for the double-polarization experiment. Preliminary results for these observables will be presented and compared with predictions provided by the SAID Partial-Wave Analysis Facility.
ContributorsLee, Robert John (Author) / Dugger, Michael (Thesis director) / Ritchie, Barry (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
161587-Thumbnail Image.png
Description
Precision measurements of kinematic correlation parameters of free neutron decayserve as a powerful probe of the Standard Model of particle physics. A wide array of Beyond the Standard Model physics theories can be probed by precision neutron physics. The Nab experiment will measure a, the electron-neutrino correlation coefficient, and b, the Fierz

Precision measurements of kinematic correlation parameters of free neutron decayserve as a powerful probe of the Standard Model of particle physics. A wide array of Beyond the Standard Model physics theories can be probed by precision neutron physics. The Nab experiment will measure a, the electron-neutrino correlation coefficient, and b, the Fierz interference term. a is amongst the most sensitive decay parameters to λ = gA/gV , the ratio of the axial-vector and vector coupling constants in the weak force. Two important systematic considerations for the Nab experiment are average detector timing bias, which must be held to ≤ 0.3 ns, and energy calibration and linearity, which must be held to 1 part in 104 . Both systematics require an in depth understanding of charge collection in Nab’s Si detectors. Simulation of Si charge collection using numerical methods and the Shockley-Ramo Theorem has been completed. A variety of detector tests, including detector and amplification electronics acceptance testing have also been completed. Also included in this dissertation is my work with the Nab ultra-high vacuum and cryogenic system.
ContributorsRandall, Glenn (Author) / Alarcon, Ricardo (Thesis advisor) / Chamberlin, Ralph (Committee member) / Dugger, Michael (Committee member) / Lebed, Richard (Committee member) / Arizona State University (Publisher)
Created2021
171920-Thumbnail Image.png
Description
Proton radiotherapy has recently become a popular form of cancer treatment. For maximum effectiveness, accurate models are needed to calculate proton angular scattering and energy loss. Scattering events are statistically independent and may be calculated from the effective number of events per reciprocal multiple scattering angle or energy loss. It

Proton radiotherapy has recently become a popular form of cancer treatment. For maximum effectiveness, accurate models are needed to calculate proton angular scattering and energy loss. Scattering events are statistically independent and may be calculated from the effective number of events per reciprocal multiple scattering angle or energy loss. It is shown that multiple scattering distributions from Molière’s scattering law can be convolved by depth for accurate numerical calculation of angular distributions in several example materials. This obviates the need for correction factors to the analytic solution and its approximations. It is also shown that numerically solving Molière’s scattering law in terms of the complete (non-small angle) differential cross section and large angle approximations extends the validity of Molière theory to large angles. To calculate probability energy loss distributions, Landau-Vavilov theory is adapted to Fourier transforms and extended to very thick targets through convolution over the probability energy loss distributions in each depth interval. When the depth is expressed in terms of the continuous slowing down approximation (CSDA) the resulting probability energy loss distributions rely on the mean excitation energy as the sole material dependent parameter. Through numerical calculation of the CSDA over the desired energy loss, this allows the energy loss cross section to vary across the distribution and accurately accounts for broadening and skewness for thick targets in a compact manner. An analytic, Fourier transform solution to Vavilov’s integral is shown. A single scattering nuclear model that calculates large angle dose distributions that have a similar functional form to FLUKA (FLUktuierende KAskade) Monte Carlo, is also introduced. For incorporation into Monte Carlo or a treatment planning system, lookup tables of the number of scattering events or cross sections for different clinical energies may be used to determine angular or energy loss distributions.
ContributorsBrosch, Ryan Michael (Author) / Rez, Peter (Thesis advisor) / Alarcon, Ricardo O (Thesis advisor) / Vachaspati, Tanmay (Committee member) / Treacy, Michael M.J. (Committee member) / Arizona State University (Publisher)
Created2022
Description

In nuclear physics, there is a discrepancy between theory and experiment concerning the number of existing nucleon resonances. Current models predict far more states than have been observed. In particular, few searches have found excited nucleon resonances with energies above 2.2 GeV in the K Lambda channel. To investigate high-mass

In nuclear physics, there is a discrepancy between theory and experiment concerning the number of existing nucleon resonances. Current models predict far more states than have been observed. In particular, few searches have found excited nucleon resonances with energies above 2.2 GeV in the K Lambda channel. To investigate high-mass nucleon resonances, efficiency-corrected yields of the reaction ep --> e K+ Lambda(1520) --> e K+ K- p in the center-of-mass energy range 2.1-4.5 GeV are constructed utilizing Jefferson Lab's CLAS12 detector. This paper presents the results of an analysis searching for high-mass nucleon resonances in the K Lambda channel between 2.1-4.5 GeV.

ContributorsOsar, Rebecca (Author) / Dugger, Michael (Thesis director) / Ritchie, Barry (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05
168718-Thumbnail Image.png
Description
The spectra of predicted particles from elementary quark models (CQMs) are expansive, accurate for the low-lying spectra, but incomplete. The GlueX experiment at Jefferson Lab is a vehicle to study medium energy photoproduction of hadronic states. The primary goal of the GlueX collaboration is to study Quantum Chromodynamics (QCD, also

The spectra of predicted particles from elementary quark models (CQMs) are expansive, accurate for the low-lying spectra, but incomplete. The GlueX experiment at Jefferson Lab is a vehicle to study medium energy photoproduction of hadronic states. The primary goal of the GlueX collaboration is to study Quantum Chromodynamics (QCD, also known as the strong nuclear force) and the nature of quark confinement. The GlueX collaboration uses a polarized photon beam incident on a liquid hydrogen target (LH2) to investigate the aftermath of photon-proton interactions.The cascade baryons, denoted by Ξ, are defined by having two, second-generation, strange quarks with an additional first-generation light quark (u or d). Experimentally, few cascades have been discovered, which is the antithesis of what most models expect. The cascades have some favorable attributes but are difficult to detect because the production cross sections are small and direct production is unlikely. Fortunately, in the 12 GeV era of the GlueX experiment, there is sufficient energy, beam time and data analysis tools for the detection of excited cascade states and their properties. From the reaction γp→K^+ K^+ Ξ^- π^0, the invariant mass spectra of Ξ^- π^0 system was surveyed for new possible resonances. The invariant mass spectrum has a strong Ξ(1530) signal with other smaller resonances throughout the spectrum. Preliminary cross sections for the Ξ(1530) that was photoproduced from the proton are presented at energies never before explored. While the Ξ(1530) couples almost exclusively to the Ξπ channel, there is an easily identifiable Ξ(1690) signal decaying Ξπ. Through the use of a simultaneous fitting routing of the Ξ*- mass spectra, I was able to observe the Ξ(1690) decaying to the KΛ, as well as to the Ξ-π0 branch. With additional statistics, a measurement of the branching ratio should be possible. Lastly, a partial wave analysis (PWA) was completed to verify that the total angular momentum of Ξ(1530) is J = 3/2 and consistent with having positive parity. Additionally, there is evidence of a potentially interesting feature slightly above the mass of the Ξ(1530) that should be more fully explored as new GlueX data becomes available.
ContributorsSumner, Brandon Christopher Lamont (Author) / Dugger, Michael (Thesis advisor) / Ritchie, Barry (Committee member) / Lebed, Richard (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2022
157551-Thumbnail Image.png
Description
Quantum Monte Carlo is one of the most accurate ab initio methods used to study nuclear physics. The accuracy and efficiency depend heavily on the trial wave function, especially in Auxiliary Field Diffusion Monte Carlo (AFDMC), where a simplified wave function is often used to allow calculations of larger systems.

Quantum Monte Carlo is one of the most accurate ab initio methods used to study nuclear physics. The accuracy and efficiency depend heavily on the trial wave function, especially in Auxiliary Field Diffusion Monte Carlo (AFDMC), where a simplified wave function is often used to allow calculations of larger systems. The simple wave functions used with AFDMC contain short range correlations that come from an expansion of the full correlations truncated to linear order. I have extended that expansion to quadratic order in the pair correlations. I have investigated this expansion by keeping the full set of quadratic correlations as well an expansion that keeps only independent pair quadratic correlations. To test these new wave functions I have calculated ground state energies of 4He, 16O, 40Ca and symmetric nuclear matter at saturation density ρ = 0.16 fm−3 with 28 particles in a periodic box. The ground state energies calculated with both wave functions decrease with respect to the simpler wave function with linear correlations only for all systems except 4He for both variational and AFDMC calculations. It was not expected that the ground state energy of 4He would decrease due to the simplicity of the alpha particle wave function. These correlations have also been applied to study alpha particle formation in neutron rich matter, with applications to neutron star crusts and neutron rich nuclei. I have been able to show that this method can be used to study small clusters as well as the effect of external nucleons on these clusters.
ContributorsPetrie, Cody L (Author) / Schmidt, Kevin E (Thesis advisor) / Shovkovy, Igor A. (Committee member) / Beckstein, Oliver (Committee member) / Alarcon, Ricardo O (Committee member) / Arizona State University (Publisher)
Created2019
154451-Thumbnail Image.png
Description
A series of experiments using a polarized beam incident on a polarized frozen spin target

(FROST) was conducted at Jefferson Lab in 2010. Results presented here were taken

during the second running period with the FROST target using the CEBAF Large Acceptance

Spectrometer (CLAS) detector at Jefferson Lab, which used transversely-polarized

protons in a

A series of experiments using a polarized beam incident on a polarized frozen spin target

(FROST) was conducted at Jefferson Lab in 2010. Results presented here were taken

during the second running period with the FROST target using the CEBAF Large Acceptance

Spectrometer (CLAS) detector at Jefferson Lab, which used transversely-polarized

protons in a butanol target and a circularly-polarized incident tagged photon beam with

energies between 0.62 and 2.93 GeV. Data are presented for the F and T polarization observables

for h meson photoproduction on the proton from W = 1.55 GeV to 1.80 GeV.

The data presented here will improve the world database and refine theoretical approaches

of nucleon structure.
ContributorsTucker, Ross (Author) / Ritchie, Barry (Thesis advisor) / Dugger, Michael (Committee member) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Arizona State University (Publisher)
Created2016