Matching Items (15)
136721-Thumbnail Image.png
Description
While public transit systems are perceived to produce lower GHG emission intensities per passenger miles traveled (PMT) and per vehicle miles traveled (VMT), there is a limited understanding of emissions per PMT/VMT across cities, or of how emissions may change across modes (light, metro, commuter, and bus) and time (e.g.,

While public transit systems are perceived to produce lower GHG emission intensities per passenger miles traveled (PMT) and per vehicle miles traveled (VMT), there is a limited understanding of emissions per PMT/VMT across cities, or of how emissions may change across modes (light, metro, commuter, and bus) and time (e.g., with changing electricity mixes in the future). In order to better understand the GHG emissions intensity of public transit systems, a comparative emissions assessment was developed utilizing the National Transit Database (NTD) which reports energy use from 1997 to 2012 of rail and bus systems across the US. By determining the GHG emission intensities (per VMT or per PMT) for each mode of transit across multiple years, the modes of transit can be better compared between one another. This comparison can help inform future goals to reduce GHG emissions as well as target reductions from the mode of transit that has the highest emissions. The proposed analysis of the NTD and comparison of modal emission intensities will be used to develop future forecasting that can guide public transit systems towards a sustainable future.
ContributorsCano, Alex (Author) / Chester, Mikhail (Thesis director) / Seager, Thomas (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-12
Description

Providers of systems engineering services and their employees are not always able to be the masters of their own destiny. When working in staff augmentation roles under the auspices of another company, they are typically forced to operate within the corporate culture from which they derive their livelihood, following “foreign”

Providers of systems engineering services and their employees are not always able to be the masters of their own destiny. When working in staff augmentation roles under the auspices of another company, they are typically forced to operate within the corporate culture from which they derive their livelihood, following “foreign” processes and procedures, responding to orders and directives. This situation calls for an alternative maturity model for those that provide systems engineering services. While a client organization might be maturing according to any of several proposed models (SEI 1993, SEI 1995, EPIC 1995, ISO 1990, IEEE 1994), the services contractor cannot necessarily be said to be achieving a similar status.

This should not, however, preclude significant maturation goals on the part of the service provider. The Phoenix Imperative is both a business model and maturity model that has worked effectively in several corporations providing system engineering services. It was developed in the context described above and honed over a period of several years with several customers. It provides not only an alternative to the other organizational maturity models that have been proposed, but also delivers the potential for adoption as a personal maturity model for individuals interested in increasing their effectiveness within the context of employment with a service provider.

Created2010
Description

In his writings over the past decade, Brad Allenby has proposed (at least) 16 principles of sustainable engineering (see references) that are collectively known as the Earth Systems Engineering and Management (ESEM) principles. These principles have merit and applicability in many disciplines and domains of discourse, but are sometimes awkward

In his writings over the past decade, Brad Allenby has proposed (at least) 16 principles of sustainable engineering (see references) that are collectively known as the Earth Systems Engineering and Management (ESEM) principles. These principles have merit and applicability in many disciplines and domains of discourse, but are sometimes awkward to use due to the quantity of words required to accurately express their meaning. In light of this, it has become necessary to formulate a simplified list of “abbreviated tags” for ease of reference in conversation and concise writing. This list of tags also makes the principles immediately accessible to those who may want to pursue the more thorough definitions offered by Allenby. The following tags have been proposed for use when a concise phrasing is required. The citation provided after the tag is, in my opinion, the most complete expression of Allenby’s thought on this principle. It can be used when citing the principle in written assignments or publications.

Created2011-05-20
189328-Thumbnail Image.png
Description
Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation,

Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation, students need to be able to apply evolutionary principles to real-life situations, and accept that the theory of evolution is the best scientific explanation for the unity and diversity of life on Earth. In order to help students progress on both fronts, biology education researchers need surveys that measure evolution acceptance and assessments that measure students’ ability to apply evolutionary concepts. This dissertation improves the measurement of student understanding and acceptance of evolution by (1) developing a novel Evolutionary Medicine Assessment that measures students’ ability to apply the core principles of Evolutionary Medicine to a variety of health-related scenarios, (2) reevaluating existing measures of student evolution acceptance by using student interviews to assess response process validity, and (3) correcting the validity issues identified on the most widely-used measure of evolution acceptance - the Measure of Acceptance of the Theory of Evolution (MATE) - by developing and validating a revised version of this survey: the MATE 2.0.
ContributorsMisheva, Anastasia Taya (Author) / Brownell, Sara (Thesis advisor) / Barnes, Elizabeth (Committee member) / Collins, James (Committee member) / Cooper, Katelyn (Committee member) / Sterner, Beckett (Committee member) / Arizona State University (Publisher)
Created2023
Description

While the scientific study of religion is not new, the topic has yet to be approached by Lifecycle Assessment (LCA). This work demonstrates a method for assessing the personal “cost” of “manufacturing” a mature religious adherent, or, a believer committed to a particular faith. By measuring such inputs as personal

While the scientific study of religion is not new, the topic has yet to be approached by Lifecycle Assessment (LCA). This work demonstrates a method for assessing the personal “cost” of “manufacturing” a mature religious adherent, or, a believer committed to a particular faith. By measuring such inputs as personal importance of faith, prayer, religious service attendance, religious experiences, and scripture reading, an assessment can be made of the quantity of such inputs required to engender enduring religious devotion. Ultimately, this study has demonstrated that the data typically collected in longitudinal surveys are insufficient to adequately support any firm quantitative conclusions, but the method proposed is sound and can be exploited when data becomes available.

Created2012-05
153486-Thumbnail Image.png
Description
Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare

Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare and contrast system deployment options for suitability in a variety of environments and allows for consistent treatment of resilience across domains. Systems engineers, whether planning future infrastructures or managing ecosystems, are increasingly asked to deliver resilient systems. Quantum resilience provides a way forward that allows specific resilience requirements to be specified, validated, and verified.

Quantum resilience makes two very important claims. First, resilience cannot be characterized without recognizing both the system and the valued function it provides. Second, resilience is not about disturbances, insults, threats, or perturbations. To avoid crippling infinities, characterization of resilience must be accomplishable without disturbances in mind. In light of this, quantum resilience defines resilience as the extent to which a system delivers its valued functions, and characterizes resilience as a function of system productivity and complexity. System productivity vis-à-vis specified “valued functions” involves (1) the quanta of the valued function delivered, and (2) the number of systems (within the greater system) which deliver it. System complexity is defined structurally and relationally and is a function of a variety of items including (1) system-of-systems hierarchical decomposition, (2) interfaces and connections between systems, and (3) inter-system dependencies.

Among the important features of quantum resilience is that it can be implemented in any system engineering tool that provides sufficient design and specification rigor (i.e., one that supports standards like the Lifecycle and Systems Modeling languages and frameworks like the DoD Architecture Framework). Further, this can be accomplished with minimal software development and has been demonstrated in three model-based system engineering tools, two of which are commercially available, well-respected, and widely used. This pragmatic approach assures transparency and consistency in characterization of resilience in any discipline.
ContributorsRoberts, Thomas Wade (Author) / Allenby, Braden (Thesis advisor) / Chester, Mikhail (Committee member) / Anderies, John M (Committee member) / Arizona State University (Publisher)
Created2015
127828-Thumbnail Image.png
Description

Small commercial buildings, or those comprising less than 50,000 square feet of floor area, make up 90% of the total number of buildings in the United States. Though these buildings currently account for less than 50% of total energy consumption in the U.S., this statistic is expected to change as

Small commercial buildings, or those comprising less than 50,000 square feet of floor area, make up 90% of the total number of buildings in the United States. Though these buildings currently account for less than 50% of total energy consumption in the U.S., this statistic is expected to change as larger commercial buildings become more efficient and thus account for a smaller percentage of commercial building energy consumption. This paper describes the efforts of a multi-organization collaboration and their demonstration partners in developing a library of case studies that promote and facilitate energy efficiency in the small commercial buildings market as well as a case study template that standardized the library. Case studies address five identified barriers to energy efficiency in the small commercial market, specifically lack of: 1) access to centralized, comprehensive, and consistent information about how to achieve energy targets, 2) reasonably achievable energy targets, 3) access to tools that measure buildings’ progress toward targets, 4) financial incentives that make the reduction effort attractive, and 5) effective models of how disparate stakeholders can collaborate in commercial centers to reach targets. The case study library can be organized by location, ownership type, decision criteria, building type, project size, energy savings, end uses impacted, and retrofit measures. This paper discusses the process of developing the library and case study template. Finally, the paper presents next steps in demonstrating the efficacy of the library and explores energy savings potential from broad implementation.

ContributorsBarnes, Elizabeth (Author) / Parrish, Kristen (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-14
Description

While the definition of sustainability remains open for all to contribute to and participate in, there do seem to be some notions it has come to embody that should not be neglected as the definition coalesces. Among these are the ethical and social dimensions of sustainability. Whether or not it

While the definition of sustainability remains open for all to contribute to and participate in, there do seem to be some notions it has come to embody that should not be neglected as the definition coalesces. Among these are the ethical and social dimensions of sustainability. Whether or not it is appropriate, required, or even desirable, concepts like social equity, human rights, ethical sharing of commons, etc. have increasingly come under the umbrella of the sustainability discourse. Even if “sustainability” as a bare word doesn’t imply those things, the concept of sustainable development certainly has taken on those dimensions. That sustainability might be redefined or re-scoped to be a purely environmental or a rigidly scientific endeavor, is not an immediate concern of this paper, though if that were to occur (whether for the sake of simplicity or pragmatics), it should be done explicitly so the ethical sub-discourse can be maintained (indeed, sustained) by some other movement.

This paper proposes a mechanism by which such a migration in terms can be prevented. First, in reviewing the work of Denis Goulet, it shows the solid basis for including an ethical aspect in the sustainability discourse. Second, it points out that Karl-Henrik Robèrt’s highly-lauded and broadly-employed sustainability framework, The Natural Step, is deficient in this area. This deficiency provides the impetus for, finally, proposing a mechanism by which The Natural Step can be extended to include the important social and ethical dimensions of sustainability. This mechanism is based on the capabilities approaches that, in many respects, evolved out of Goulet’s early work. Augmented accordingly, TNS can continue to be used without fear of overlooking the social and ethical aspects of the sustainability discourse.

Description

Essay scoring is a difficult and contentious business. The problem is exacerbated when there are no “right” answers for the essay prompts. This research developed a simple toolset for essay analysis by integrating a freely available Latent Dirichlet Allocation (LDA) implementation into a homegrown assessment assistant. The complexity of the

Essay scoring is a difficult and contentious business. The problem is exacerbated when there are no “right” answers for the essay prompts. This research developed a simple toolset for essay analysis by integrating a freely available Latent Dirichlet Allocation (LDA) implementation into a homegrown assessment assistant. The complexity of the essay assessment problem is demonstrated and illustrated with a representative collection of open-ended essays. This research also explores the use of “expert vectors” or “keyword essays” for maximizing the utility of LDA with small corpora. While, by itself, LDA appears insufficient for adequately scoring essays, it is quite capable of classifying responses to open-ended essay prompts and providing insight into the responses. This research also reports some trends that might be useful in scoring essays once more data is available. Some observations are made about these insights and a discussion of the use of LDA in qualitative assessment results in proposals that may assist other researchers in developing more complete essay assessment software.

Description

Earth Systems Engineering and Management (ESEM) is a framework for both discussing and addressing the adaptive management of complex socio-ecological systems (SES). Governance of emerging technologies is an SES challenge that demonstrates all the classic symptoms of a wicked problem. This paper surveys governance literature in light of the ESEM

Earth Systems Engineering and Management (ESEM) is a framework for both discussing and addressing the adaptive management of complex socio-ecological systems (SES). Governance of emerging technologies is an SES challenge that demonstrates all the classic symptoms of a wicked problem. This paper surveys governance literature in light of the ESEM principles and explores the potential for using the principles of ESEM as a mechanism for governance, addressing particularly ESEM’s overlap with the recently promulgated anticipatory governance as defined by its three pillars of foresight, engagement, and integration. This paper demonstrates that the intersection of these concepts is significant and concludes that ESEM is a worthy framework for governance.