Matching Items (72)
Filtering by

Clear all filters

156076-Thumbnail Image.png
Description
Since the discovery of graphene, two dimensional materials (2D materials) have become a focus of interest for material research due to their many unique physical properties embedded in their 2D structure. While they host many exciting potential applications, some of these 2D materials are subject to environmental instability issues induced

Since the discovery of graphene, two dimensional materials (2D materials) have become a focus of interest for material research due to their many unique physical properties embedded in their 2D structure. While they host many exciting potential applications, some of these 2D materials are subject to environmental instability issues induced by interaction between material and gas molecules in air, which poses a barrier to further application and manufacture. To overcome this, it is necessary to understand the origin of material instability and interaction with molecules commonly found in air, as well as developing a reproducible and manufacturing compatible method to post-process these materials to extend their lifetime. In this work, the very first investigation on environmental stability on Te containing anisotropic 2D materials such as GaTe and ZrTe3 is reported. Experimental results have demonstrated that freshly exfoliated GaTe quickly deteriorate in air, during which the Raman spectrum, surface morphology, and surface chemistry undergo drastic changes. Environmental Raman spectroscopy and XPS measurements demonstrate that H2O molecules in air interact strongly on the surface while O2, N2, and inert gases don't show any detrimental effects on GaTe surface. Moreover, the anisotropic properties of GaTe slowly disappear during the aging process. To prevent this gas/material interaction based surface transformation, diazonium based surface functionalization is adopted on these Te based 2D materials. Environmental Raman spectroscopy results demonstrate that the stability of functionalized Te based 2D materials exhibit much higher stability both in ambient and extreme conditions. Meanwhile, PL spectroscopy, angle resolved Raman spectroscopy, atomic force microscopy measurements confirm that many attractive physical properties of the material are not affected by surface functionalization. Overall, these findings unveil the degradation mechanism of Te based 2D materials as well as provide a way to significantly enhance their environmental stability through an inexpensive and reproducible surface chemical functionalization route.
ContributorsYang, Sijie (Author) / Tongay, Sefaattin (Thesis advisor) / Gould, Ian (Thesis advisor) / Trovitch, Ryan (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2017
158346-Thumbnail Image.png
Description
Photocatalytic activity of titanium dioxide (titania or TiO2) offers enormous potential in solving energy and environmental problems. Immobilization of titania nanoparticles on inert substrates is an effective way of utilizing its photocatalytic activity since nanoparticles enable high mass-transport, and immobilization avoids post-treatment separation. For competitive photocatalytic performance, the morphology of

Photocatalytic activity of titanium dioxide (titania or TiO2) offers enormous potential in solving energy and environmental problems. Immobilization of titania nanoparticles on inert substrates is an effective way of utilizing its photocatalytic activity since nanoparticles enable high mass-transport, and immobilization avoids post-treatment separation. For competitive photocatalytic performance, the morphology of the substrate can be engineered to enhance mass-transport and light accessibility. In this work, two types of fiber architectures (i.e., dispersed polymer/titania phase or D-phase, and multi-phase polymer-core/composite-shell fibers or M-phase) were explored as effective substrate solutions for anchoring titania. These fibers were fabricated using a low-cost and scalable fiber spinning technique. Polymethyl methacrylate (PMMA) was selected as the substrate material due to its ultraviolet (UV) transparency and stability against oxidative radicals. The work systematically investigates the influence of the fiber porosity on mass-transport and UV light scattering. The properties of the fabricated fiber systems were characterized by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), UV-vis spectrophotometry (UV-vis), and mechanical analysis. The photocatalytic performance was characterized by monitoring the decomposition of methylene blue (MB) under UV (i.e., 365 nm) light. Fabrication of photocatalytic support structures was observed to be an optimization problem where porosity improved mass transport but reduced UV accessibility. The D-phase fibers demonstrated the highest MB degradation rate (i.e., 0.116 min-1) due to high porosity (i.e., 33.2 m2/g). The M-phase fibers reported a better degradation rate compared to a D-phase fibers due to higher UV accessibility efficiency.
ContributorsKanth, Namrata (Author) / Song, Kenan (Thesis advisor) / Tongay, Sefaattin (Thesis advisor) / Kannan, Arunachala Mada (Committee member) / Arizona State University (Publisher)
Created2020
158390-Thumbnail Image.png
Description
Metal-organic frameworks have made a feature in the cutting-edge technology with a wide variety of applications because they are the new material candidate as adsorbent or membrane with high surface area, various pore sizes, and highly tunable framework functionality properties. The emergence of two-dimensional (2D) metal-organic frameworks has surged an

Metal-organic frameworks have made a feature in the cutting-edge technology with a wide variety of applications because they are the new material candidate as adsorbent or membrane with high surface area, various pore sizes, and highly tunable framework functionality properties. The emergence of two-dimensional (2D) metal-organic frameworks has surged an outburst of intense research to understand the feasible synthesis and exciting material properties of these class of materials. Despite their potential, studies to date show that it is extremely challenging to synthesize and manufacture 2D MOF at large scales with ultimate control over crystallinity and thickness.

The field of research to date has produced various synthesis routes which can further be used to design 2D materials with a range of organic ligands and metal linkers. This thesis seeks to extend these design rules to demonstrate the competitive growth of two- dimensional (2D) metal-organic frameworks(MOF) and their alloys to predict which ligands and metals can be combined, study the intercalation of Bromine in these frameworks and their alloys which leads to the discovery of reduced band gap in the layered MOF alloy.

In this study it has been shown that the key factor in achieving layered 2D MOFs and it relies on the use of carefully engineered ligands to terminate the out-of-plane sites on metal clusters thereby eliminating strong interlayer hydrogen bond formation.

The major contribution of pyridine is to replace interlayer hydrogen bonding or other weak chemical bonds. Overall results establish an entirely new synthesis method for producing highly crystalline and scalable 2D MOFs and their alloys. Bromine intercalation merits future studies on band gap engineering in these layered materials.
ContributorsVijay, Shiljashree (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew D (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2020
158673-Thumbnail Image.png
Description
Losses in commercial microwave dielectrics arise from spin excitations in paramagnetic transition metal dopants, at least at reduced temperatures. The magnitude of the loss tangent can be altered by orders of magnitude through the application of an external magnetic field. The goal of this thesis is to produce “smart” dielectrics

Losses in commercial microwave dielectrics arise from spin excitations in paramagnetic transition metal dopants, at least at reduced temperatures. The magnitude of the loss tangent can be altered by orders of magnitude through the application of an external magnetic field. The goal of this thesis is to produce “smart” dielectrics that can be switched “on” or “off” at small magnetic fields while investigating the influence of transition metal dopants on the dielectric, magnetic, and structural properties.

A proof of principle demonstration of a resonator that can switch from a high-Q “on state” to a low-Q “off state” at reduced temperatures is demonstrated in (Al1-xFex)2O3 and La(Al1-xFex)O3. The Fe3+ ions are in a high spin state (S=5/2) and undergo electron paramagnetic resonance absorption transitions that increase the microwave loss of the system. Transitions occur between mJ states with a corresponding change in the angular momentum, J, by ±ħ (i.e., ΔmJ=±1) at small magnetic fields. The paramagnetic ions also have an influence on the dielectric and magnetic properties, which I explore in these systems along with another low loss complex perovskite material, Ca[(Al1-xFex)1/2Nb1/2]O3. I describe what constitutes an optimal microwave loss switchable material induced from EPR transitions and the mechanisms associated with the key properties.

As a first step to modeling the properties of high-performance microwave host lattices and ultimately their performance at microwave frequencies, a first-principles approach is used to determine the structural phase stability of various complex perovskites with a range of tolerance factors at 0 K and finite temperatures. By understanding the correct structural phases of these complex perovskites, the temperature coefficient of resonant frequency can be better predicted.

A strong understanding of these parameters is expected to open the possibility to produce new types of high-performance switchable filters, time domain MIMO’s, multiplexers, and demultiplexers.
ContributorsGonzales, Justin Michael (Author) / Newman, Nathan (Thesis advisor) / Muhich, Christopher (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2020
158656-Thumbnail Image.png
Description
Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in

Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in 2017. The findings opened up enormous possibilities for studying new quantum states of matter that can enable potential to design spintronic, magnetic memory, data storage, sensing, and topological devices. However, practical applications in modern technologies demand materials with various physical and chemical properties such as electronic, optical, structural, catalytic, magnetic etc., which cannot be found within single material systems. Considering that compositional modifications in 2D systems lead to significant changes in properties due to the high anisotropy inherent to their crystallographic structure, this work focuses on alloying of TMH compounds to explore the potentials for tuning their properties. In this thesis, the ternary cation alloys of Co(1-x)Ni(x)Cl(2) and Mo(1-x)Cr(x)Cl(3) were synthesized via chemical vapor transport at a various stoichiometry. Their compositional, structural, and magnetic properties were studied using Energy Dispersive Spectroscopy, Raman Spectroscopy, X-Ray Diffraction, and Vibrating Sample Magnetometry. It was found that completely miscible ternary alloys of Co(1-x)Ni(x)Cl(2) show an increasing Néel temperature with nickel concentration. The Mo(1-x)Cr(x)Cl(3) alloy shows potential magnetic phase changes induced by the incorporation of molybdenum species within the host CrCl3 lattice. Magnetic measurements give insight into potential antiferromagnetic to ferromagnetic transition with molybdenum incorporation, accompanied by a shift in the magnetic easy-axis from parallel to perpendicular. Phase separation was found in the Fe(1-x)Cr(x)Cl(3) ternary alloy indicating that crystallographic structure compatibility plays an essential role in determining the miscibility of two parent compounds. Alloying across two similar (TMH) compounds appears to yield predictable results in properties as in the case of Co(1-x)Ni(x)Cl(2), while more exotic transitions, as in the case of Mo(1-x)Cr(x)Cl(3), can emerge by alloying dissimilar compounds. When dissimilarity reaches a certain limit, as with Fe(1-x)Cr(x)Cl(3), phase separation becomes more favorable. Future studies focusing on magnetic and structural phase transitions will reveal more insight into the effect of alloying in these TMH systems.
ContributorsKolari, Pranvera (Author) / Tongay, Sefaattin (Thesis advisor) / Jiao, Yang (Committee member) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2020
158173-Thumbnail Image.png
Description
Satisfying the ever-increasing demand for electricity while maintaining sustainability and eco-friendliness has become a key challenge for humanity. Around 70% of energy is rejected as heat from different sectors. Thermoelectric energy harvesting has immense potential to convert this heat into electricity in an environmentally friendly manner. However, low efficiency and

Satisfying the ever-increasing demand for electricity while maintaining sustainability and eco-friendliness has become a key challenge for humanity. Around 70% of energy is rejected as heat from different sectors. Thermoelectric energy harvesting has immense potential to convert this heat into electricity in an environmentally friendly manner. However, low efficiency and high manufacturing costs inhibit the widespread application of thermoelectric devices. In this work, an inexpensive solution processing technique and a nanostructuring approach are utilized to create thermoelectric materials. Specifically, the solution-state and solid-state structure of a lead selenide (PbSe) precursor is characterized by different spectroscopic techniques. This precursor has shown promise for preparing thermoelectric lead selenide telluride (PbSexTe1-x) thin films. The precursor was prepared by reacting lead and diphenyl diselenide in different solvents. The characterization reveals the formation of a solvated lead(II) phenylselenolate complex which deepens the understanding of the formation of these precursors. Further, using slightly different chemistry, a low-temperature tin(II) selenide (SnSe) precursor was synthesized and identified as tin(IV) methylselenolate. The low transformation temperature makes it compatible with colloidal PbSe nanocrystals. The colloidal PbSe nanocrystals were chemically treated with a SnSe precursor and subjected to mild annealing to form conductive nanocomposites. Finally, the room temperature thermoelectric characterization of solution-processed PbSexTe1-x thin films is presented. This is followed by a setup development for temperature-dependent measurements and preliminary temperature-dependent measurements on PbSexTe1-x thin films.
ContributorsVartak, Prathamesh Bhalchandra (Author) / Wang, Robert Y. (Thesis advisor) / Wang, Liping (Committee member) / Trovitch, Ryan J. (Committee member) / Tongay, Sefaattin (Committee member) / Goodnick, Stephen M. (Committee member) / Arizona State University (Publisher)
Created2020
157927-Thumbnail Image.png
Description
Two-dimensional quantum materials have garnered increasing interest in a wide

variety of applications due to their promising optical and electronic properties. These

quantum materials are highly anticipated to make transformative quantum sensors and

biosensors. Biosensors are currently considered among one of the most promising

solutions to a wide variety of biomedical and environmental problems

Two-dimensional quantum materials have garnered increasing interest in a wide

variety of applications due to their promising optical and electronic properties. These

quantum materials are highly anticipated to make transformative quantum sensors and

biosensors. Biosensors are currently considered among one of the most promising

solutions to a wide variety of biomedical and environmental problems including highly

sensitive and selective detection of difficult pathogens, toxins, and biomolecules.

However, scientists face enormous challenges in achieving these goals with current

technologies. Quantum biosensors can have detection with extraordinary sensitivity and

selectivity through manipulation of their quantum states, offering extraordinary properties

that cannot be attained with traditional materials. These quantum materials are anticipated

to make significant impact in the detection, diagnosis, and treatment of many diseases.

Despite the exciting promise of these cutting-edge technologies, it is largely

unknown what the inherent toxicity and biocompatibility of two-dimensional (2D)

materials are. Studies are greatly needed to lay the foundation for understanding the

interactions between quantum materials and biosystems. This work introduces a new

method to continuously monitor the cell proliferation and toxicity behavior of 2D

materials. The cell viability and toxicity measurements coupled with Live/Dead

fluorescence imaging suggest the biocompatibility of crystalline MoS2 and MoSSe

monolayers and the significantly-reduced cellular growth of defected MoTe2 thin films

and exfoliated MoS2 nanosheets. Results show the exciting potential of incorporating

kinetic cell viability data of 2D materials with other assay tools to further fundamental

understanding of 2D material biocompatibility.
ContributorsTran, Michael, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Thesis advisor) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
157671-Thumbnail Image.png
Description
More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when

More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when one of the chalcogenides atomic layer is being completely replaced by a layer of different chalcogen element. However, due to lack of accurate processing control at nanometer scales, key for creating a highly crystalline Janus structure has not yet been familiarized. Thus, experimental characterization and implication of these Janus crystals are still in a state of stagnation. This work presents a new advanced methodology that could prove to be highly efficient and effective for selective replacement of top layer atomic sites at room temperature conditions.

This is specifically more focused on proving an easy repeatability for replacement of top atomic layer chalcogenide from a parent structure of already grown TMDC monolayer (via CVD) by a post plasma processing technique. Though this developed technique is not limited to only chalcogen atom replacement but can be extended to any type of surface functionalization requirements.

Basic characterization has been performed on the Janus crystal of SeMoS and SeWS where, creation and characterization of SeWS has been done for the very first time, evidencing a repeatable nature of the developed methodology.
ContributorsTrivedi, Dipesh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
157733-Thumbnail Image.png
Description
A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant,

A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant, atomic spacing, and lattice vibrations.

Optical and electrical properties have also been studied mainly focusing on the thickness effect on different properties where the Photoluminescence (PL) and exciton binding energies show energy shift as thickness of the material changes. Temperature dependent PL has shown different characteristics when comparing methylammonium lead bromide (MAPbBr3) to butylammonium lead bromide (BA2PbBr4) and comparing the two layered n=1 materials butylammonium lead bromide (BA2PbBr4) to butylammonium lead iodide (BA2PbI4). Time-resolved spectroscopy displays different lifetimes as thickness of bromide-based perovskite changes. Finally, thickness dependence (starting from monolayers) Kelvin Probe Force Microscopy (KPFM) of the layered materials BA2PbBr4, Butylammonium(methylammonium)lead bromide (BA2MAPb2Br7), and molybdenum sulfide (MoS2) were studied showing an exponential relation between the thickness of the materials and their surface potentials.
ContributorsAlenezi, Omar (Author) / Tongay, Sefaattin (Thesis advisor) / King, Richard (Thesis advisor) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2019
157836-Thumbnail Image.png
Description
ABSTRACT

Domestic dogs have assisted humans for millennia. However, the extent to which these helpful behaviors are prosocially motivated remains unclear. To assess the propensity of pet dogs to spontaneously and actively rescue distressed humans, this study tested whether sixty pet dogs would release their seemingly trapped owners from a large

ABSTRACT

Domestic dogs have assisted humans for millennia. However, the extent to which these helpful behaviors are prosocially motivated remains unclear. To assess the propensity of pet dogs to spontaneously and actively rescue distressed humans, this study tested whether sixty pet dogs would release their seemingly trapped owners from a large box. To examine the causal mechanisms that shaped this behavior, the readiness of each dog to open the box was tested in three conditions: 1) the owner sat in the box and called for help (“Distress” test), 2) an experimenter placed high-value food rewards in the box (“Food” test), and 3) the owner sat in the box and calmly read aloud (“Reading” test).

Dogs were as likely to release their distressed owner as to retrieve treats from inside the box, indicating that rescuing an owner may be a highly rewarding action for dogs. After accounting for ability, dogs released the owner more often when the owner called for help than when the owner read aloud calmly. In addition, opening latencies decreased with test number in the Distress test but not the Reading test. Thus, rescuing the owner could not be attributed solely to social facilitation, stimulus enhancement, or social contact-seeking behavior.

Dogs displayed more stress behaviors in the Distress test than in the Reading test, and stress scores decreased with test number in the Reading test but not in the Distress test. This evidence of emotional contagion supports the hypothesis that rescuing the distressed owner was an empathetically-motivated prosocial behavior. Success in the Food task and previous (in-home) experience opening objects were both strong predictors of releasing the owner. Thus, prosocial behavior tests for dogs should control for physical ability and previous experience.
ContributorsVan Bourg, Joshua Lazar (Author) / Wynne, Clive D (Thesis advisor) / Gilby, Ian C (Committee member) / Aktipis, C. Athena (Committee member) / Arizona State University (Publisher)
Created2019