Matching Items (95)
150024-Thumbnail Image.png
Description
Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are

Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are essential for interpreting Martian mineralogy and geologic history. However, previous studies have shown that chemical weathering and the precipitation of fine-grained secondary silicates can adversely affect the accuracy of TIR spectral models. Furthermore, spectral libraries used to identify minerals on the Martian surface lack some important weathering products, including poorly-crystalline aluminosilicates like allophane, thus eliminating their identification in TIR spectral models. It is essential to accurately interpret TIR spectral data from chemically weathered surfaces to understand the evolution of aqueous processes on Mars. Laboratory experiments were performed to improve interpretations of TIR data from weathered surfaces. To test the accuracy of deriving chemistry of weathered rocks from TIR spectroscopy, chemistry was derived from TIR models of weathered basalts from Baynton, Australia and compared to actual weathering rind chemistry. To determine how specific secondary silicates affect the TIR spectroscopy of weathered basalts, mixtures of basaltic minerals and small amounts of secondary silicates were modeled. Poorly-crystalline aluminosilicates were synthesized and their TIR spectra were added to spectral libraries. Regional Thermal Emission Spectrometer (TES) data were modeled using libraries containing these poorly-crystalline aluminosilicates to test for their presence on the Mars. Chemistry derived from models of weathered Baynton basalts is not accurate, but broad chemical weathering trends can be interpreted from the data. TIR models of mineral mixtures show that small amounts of crystalline and amorphous silicate weathering products (2.5-5 wt.%) can be detected in TIR models and can adversely affect modeled plagioclase abundances. Poorly-crystalline aluminosilicates are identified in Northern Acidalia, Solis Planum, and Meridiani. Previous studies have suggested that acid sulfate weathering was the dominant surface alteration process for the past 3.5 billion years; however, the identification of allophane indicates that alteration at near-neutral pH occurred on regional scales and that acid sulfate weathering is not the only weathering process on Mars.
ContributorsRampe, Elizabeth Barger (Author) / Sharp, Thomas G (Thesis advisor) / Christensen, Phillip (Committee member) / Hervig, Richard (Committee member) / Shock, Everett (Committee member) / Williams, Lynda (Committee member) / Arizona State University (Publisher)
Created2011
149677-Thumbnail Image.png
Description
Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in

Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in biomedicine are relatively unexplored but have great potential scientific interest due to their essential nature in metabolism. Iron, a crucial element in biology, fractionates during biochemically relevant reactions. To test the extent of this fractionation in an important reaction process, equilibrium iron isotope fractionation during organic ligand exchange was determined. The results show that iron fractionates during organic ligand exchange, and that isotope enrichment increases as a function of the difference in binding constants between ligands. Additionally, to create a mass balance model for iron in a whole organism, iron isotope compositions in a whole mouse and in individual mouse organs were measured. The results indicate that fractionation occurs during transfer between individual organs, and that the whole organism was isotopically light compared with food. These two experiments advance our ability to interpret stable iron isotopes in biomedicine. Previous research demonstrated that calcium isotope variations in urine can be used as an indicator of changes in net bone mineral balance. In order to measure calcium isotopes by MC-ICP-MS, a chemical purification method was developed to quantitatively separate calcium from other elements in a biological matrix. Subsequently, this method was used to evaluate if calcium isotopes respond when organisms are subjected to conditions known to induce bone loss: 1) Rhesus monkeys were given an estrogen-suppressing drug; 2) Human patients underwent extended bed rest. In both studies, there were rapid, detectable changes in calcium isotope compositions from baseline - verifying that calcium isotopes can be used to rapidly detect changes in bone mineral balance. By characterizing iron isotope fractionation in biologically relevant processes and by demonstrating that calcium isotopes vary rapidly in response to bone loss, this thesis represents an important step in utilizing these isotope systems as a diagnostic and mechanistic tool to study the metabolism of these elements in vivo.
ContributorsMorgan, Jennifer Lynn Louden (Author) / Anbar, Ariel D. (Thesis advisor) / Wasylenki, Laura E. (Committee member) / Jones, Anne K. (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2011
149779-Thumbnail Image.png
Description
Psychology of justice research has demonstrated that individuals are concerned with both the process and the outcomes of a decision-making event. While the literature has demonstrated the importance of formal and informal aspects of procedural justice and the relevancy of moral values, the present study focuses on introducing a new

Psychology of justice research has demonstrated that individuals are concerned with both the process and the outcomes of a decision-making event. While the literature has demonstrated the importance of formal and informal aspects of procedural justice and the relevancy of moral values, the present study focuses on introducing a new form of justice: Substantive justice. Substantive justice focuses on how the legal system uses laws to constrain and direct human behavior, specifically focusing on the function and the structure of a law. The psychology of justice literature is missing the vital distinction between laws whose function is to create social opportunities versus threats and between laws structured concretely versus abstractly. In the present experiment, we found that participant evaluations of the fairness of the law, the outcome, and the decision-maker all varied depending on the function and structure of the law used as well as the outcome produced. Specifically, when considering adverse outcomes, individuals perceived laws whose function is to create liability (threats) as being fairer when structured as standards (abstract guidelines) rather than rules (concrete guidelines); however, the opposite is true when considering laws whose function is to create eligibility (opportunities). In juxtaposition, when receiving a favorable outcome, individuals perceived laws whose function is to create liability (threats) as being fairer when defined as rules (concrete guidelines) rather than standards (abstract guidelines).
ContributorsLovis-McMahon, David (Author) / Schweitzer, Nicholas J. (Thesis advisor) / Saks, Michael (Thesis advisor) / Kwan, Sau (Committee member) / Arizona State University (Publisher)
Created2011
148089-Thumbnail Image.png
Description

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has been a point of interest since at least the 1960’s (Raymahashay, 1968). Two springs, one basic (~pH 7) and one acidic (~pH 3) mix together down an outflow channel. There are visual bands of different photosynthetic pigments which suggests the creation of temperature and chemical gradients due to the fluids mixing. In this study, to determine if fluid mixing is driving these changes of temperature and chemistry in the system, a model that factors in evaporation and cooling was developed and compared to measured temperature and chemical data collected downstream. Comparison of the modeled temperature and chemistry to the measured values at the downstream mixture shows that many of the ions, such as Cl⁻, F⁻, and Li⁺, behave conservatively with respect to mixing. This indicates that the influence of mixing accounts for a large proportion of variation in the chemical composition of the system. However, there are some chemical constituents like CH₄, H₂, and NO₃⁻, that were not conserved, and the concentrations were either depleted or increased in the downstream mixture. Some of these constituents are known to be used by microorganisms. The development of this mixing model can be used as a tool for predicting biological activity as well as building the framework for future geochemical and computational models that can be used to understand the energy availability and the microbial communities that are present.

ContributorsOrrill, Brianna Isabel (Author) / Shock, Everett (Thesis director) / Howells, Alta (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149897-Thumbnail Image.png
Description
In the present research, two interventions were developed to increase sun protection in young women. The purpose of the study was to compare the effects of intervention content eliciting strong emotional responses to visual images depicting photoaging and skin cancer, specifically fear and disgust, coupled with a message of self-efficacy

In the present research, two interventions were developed to increase sun protection in young women. The purpose of the study was to compare the effects of intervention content eliciting strong emotional responses to visual images depicting photoaging and skin cancer, specifically fear and disgust, coupled with a message of self-efficacy and benefits of sun protection (the F intervention) with an intervention that did not contain an emotional arousal component (the E intervention). Further, these two intervention conditions were compared to a control condition that contained an emotional arousal component that elicited emotion unrelated to the threat of skin cancer or photoaging (the C control condition). A longitudinal study design was employed, to examine the effects of condition immediately following the intervention, and to examine sun protection behavior 2 weeks after the intervention. A total of 352 undergraduate women at Arizona State University were randomly assigned to one of the three conditions (F n = 148, E n = 73, C n = 131). Several psychosocial constructs, including benefits of sun protection, susceptibility to and severity of photoaging and sun exposure, self-efficacy beliefs of making sun protection a daily habit, and barriers to sun protection were measured before and immediately following the intervention. Sun protection behavior was measured two weeks later. Those in the full intervention reported higher self-efficacy and severity of photoaging at immediate posttest than those in the efficacy only and control conditions. The fit of several path models was tested to explore underlying mechanisms by which the intervention affected sun protection behavior. Experienced emotion, specifically fear and disgust, predicted susceptibility and severity, which in turn predicted anticipated regret of failing to use sun protection. The relationship between this overall threat component (experienced emotion, susceptibility, severity, and anticipated regret) and intentions to engage in sun protection behavior was mediated by benefits. The present research provided evidence of the effectiveness of threat specific emotional arousal coupled with a self-efficacy and benefits message in interventions to increase sun protection. Further, this research provided additional support for the inclusion of both experienced and anticipated emotion in models of health behavior.
ContributorsMoser, Stephanie E (Author) / Aiken, Leona S. (Thesis advisor) / Shiota, Michelle N. (Committee member) / Kwan, Sau (Committee member) / Castro, Felipe (Committee member) / Arizona State University (Publisher)
Created2011
149926-Thumbnail Image.png
Description
A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes of remote identification. Protein patterns were generated using high performance liquid chromatography (HPLC). Patterns created could identify high-traffic and low-traffic indoor spaces. Samples were collected from the air using air pumps to draw air through a filter paper trapping particulates, including large amounts of shed protein matter. In complimentary research aerosolized biological samples were collected from various ecosystems throughout Ecuador to explore the relationship between environmental setting and aerosolized protein concentrations. In order to further enhance protein separation and produce more detailed patterns for the identification of individual organisms of interest; a novel separation device was constructed and characterized. The separation device incorporates a longitudinal gradient as well as insulating dielectrophoretic features within a single channel. This design allows for the production of stronger local field gradients along a global gradient allowing particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. Thus, different types of particles are simultaneously separated at different points along the channel distance given small variations of properties. The device has shown the ability to separate analytes over a large dynamic range of size, from 20 nm to 1 μm, roughly the size of proteins to the size of cells. In the study of different sized sulfate capped polystyrene particles were shown to be selectively captured as well as concentrating particles from 103 to 106 times. Qualitative capture and manipulation of β-amyloid fibrils were also shown. The results demonstrate the selective focusing ability of the technique; and it may form the foundation for a versatile tool for separating complex mixtures. Combined this work shows promise for future identification of individual organisms from aerosolized protein as well as for applications in biomedical research.
ContributorsStaton, Sarah J. R (Author) / Hayes, Mark A. (Committee member) / Anbar, Ariel D (Committee member) / Shock, Everett (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
147563-Thumbnail Image.png
Description

The Beck Depression Inventory II (BDI-II) and the Patient Health Questionnaire 9 (PHQ-9) are highly valid depressive testing tools used to measure the symptom profile of depression globally and in South Asia, respectively (Steer et al., 1998; Kroenke et al, 2001). Even though the South Asian population comprises only

The Beck Depression Inventory II (BDI-II) and the Patient Health Questionnaire 9 (PHQ-9) are highly valid depressive testing tools used to measure the symptom profile of depression globally and in South Asia, respectively (Steer et al., 1998; Kroenke et al, 2001). Even though the South Asian population comprises only 23% of the world’s population, it represents one-fifth of the world’s mental health disorders (Ogbo et al., 2018). Although this population is highly affected by mental disorders, there is a lack of culturally relevant research on specific subsections of the South Asian population.<br/><br/>As such, the goal of this study is to investigate the differences in the symptom profile of depression in native and immigrant South Asian populations. We investigated the role of collective self-esteem and perceived discrimination on mental health. <br/><br/>For the purpose of this study, participants were asked a series of questions about their depressive symptoms, self-esteem and perceived discrimination using various depressive screening measures, a self-esteem scale, and a perceived discrimination scale.<br/><br/>We found that immigrants demonstrated higher depressive symptoms than Native South Asians as immigration was viewed as a stressor. First-generation and second-generation South Asian immigrants identified equally with somatic and psychological symptoms. These symptoms were positively correlated with perceived discrimination, and collective self-esteem was shown to increase the likelihood of these symptoms.<br/><br/>This being said, the results from this study may be generalized only to South Asian immigrants who come from highly educated and high-income households. Since seeking professional help and being aware of one’s mental health is vital for wellbeing, the results from this study may spark the interest in an open communication about mental health within the South Asian immigrant community as well as aid in the restructuring of a highly reliable and valid measurement to be specific to a culture.

ContributorsMurthy, Nithara (Co-author) / Swaminathan, Manasa (Co-author) / Vogel, Joanne (Thesis director) / Kwan, Sau (Committee member) / Department of Psychology (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151562-Thumbnail Image.png
Description
ABSTRACT This thesis proposes that a focus on the bodily level of analysis can unify explanation of behavior in cognitive, social, and cultural psychology. To examine this unifying proposal, a sensorimotor mechanism with reliable explanatory power in cognitive and social psychology was used to predict a novel pattern of behavior

ABSTRACT This thesis proposes that a focus on the bodily level of analysis can unify explanation of behavior in cognitive, social, and cultural psychology. To examine this unifying proposal, a sensorimotor mechanism with reliable explanatory power in cognitive and social psychology was used to predict a novel pattern of behavior in cultural context, and these predictions were examined in three experiments. Specifically, the finding that people judge objects that require more motor effort to interact with as farther in visual space was adapted to predict that people with interdependent self-construal(SC) , relative to those with independent SC, would visually perceive their cultural outgroups as farther relative to their cultural in-groups. Justifying this cultural extension of what is primarily a cognitive mechanism is the assumption that, unlike independents, Interdependents interact almost exclusively with in-group members, and hence there sensorimotor system is less tuned to cross-cultural interactions. Thus, interdependents, more so than independents, expect looming cross-cultural interactions to be effortful, which may inflate their judgment of distance to the out-groups. Two experiments confirmed these predictions: a) interdependent Americans, compared to independent Americans, perceived American confederates (in-group) as visually closer; b) interdependent Arabs, compared to independent Arabs, perceived Arab confederates (in-group) as closer; and c) interdependent Americans, relative to independent Americans, perceived Arab confederates (out-group) as farther. A third study directly established the proposed relation between motor effort and distance to human targets: American men perceived other American men as closer after an easy interaction than after a more difficult interaction. Together, these results demonstrate that one and the same sensorimotor mechanism can explain/predict homologous behavioral patterns across the subdisciplines of psychology.
ContributorsSoliman, Tamer (Author) / Glenberg, Arthur M. (Committee member) / Kwan, Sau (Committee member) / Cohen, Adam (Committee member) / Arizona State University (Publisher)
Created2013
151725-Thumbnail Image.png
Description
Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina

Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas.
ContributorsPierini, Nicole A (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhi-Hua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
152162-Thumbnail Image.png
Description
Stable isotopes were measured in the groundwaters of the Salt River Valley basin in central Arizona to explore the utility of stable isotopes for sourcing recharge waters and engineering better well designs. Delta values for the sampled groundwaters range from -7.6‰ to -10‰ in 18O and -60‰ to -91‰ in

Stable isotopes were measured in the groundwaters of the Salt River Valley basin in central Arizona to explore the utility of stable isotopes for sourcing recharge waters and engineering better well designs. Delta values for the sampled groundwaters range from -7.6‰ to -10‰ in 18O and -60‰ to -91‰ in D and display displacements off the global meteoric water line indicative of surficial evaporation during river transport into the area. Groundwater in the basin is all derived from top-down river recharge; there is no evidence of ancient playa waters even in the playa deposits. The Salt and Verde Rivers are the dominant source of groundwater for the East Salt River valley- the Agua Fria River also contributes significantly to the West Salt River Valley. Groundwater isotopic compositions are generally more depleted in 18O and D with depth, indicating past recharge in cooler climates, and vary within subsurface aquifer layers as sampled during well drilling. When isotopic data were evaluated together with geologic and chemical analyses and compared with data from the final well production water it was often possible to identify: 1) which horizons are the primary producers of groundwater flow and how that might change with time, 2) the chemical exchange of cations and anions via water-rock interaction during top-down mixing of recharge water with older waters, 3) how much well production might be lost if arsenic-contributing horizons were sealed off, and 4) the extent to which replacement wells tap different subsurface water sources. In addition to identifying sources of recharge, stable isotopes offer a new and powerful approach for engineering better and more productive water wells.
ContributorsBond, Angela Nicole (Author) / Knauth, Paul (Thesis advisor) / Hartnett, Hilairy (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2010