Matching Items (1,067)
Filtering by

Clear all filters

137209-Thumbnail Image.png
Description
Social relationships are the single most factor that create joy in human lives. And yet, the ways we are building our cities and structuring our lives reduces our chances of interaction and increases isolation. Creating more public spaces may be a possible solution to this problem of declining social cohesion.

Social relationships are the single most factor that create joy in human lives. And yet, the ways we are building our cities and structuring our lives reduces our chances of interaction and increases isolation. Creating more public spaces may be a possible solution to this problem of declining social cohesion. Public spaces have been shown to improve rates of social cohesion and social interaction. They have also been show to have positive effects on physical health, local economies, the natural environment, reducing crime rates and psychological health. Creating public spaces in areas that are low-income or have limited amounts of space can be very challenging. This paper profiles options of community created spaces, space public spaces and temporary public spaces. All of which are options for low-income and limited space communities. The paper concludes with the summery of an active project to create a public space in such a community through a joint-use agreement.
ContributorsChampagne, Elizabeth Anne (Author) / Golub, Aaron (Thesis director) / Kelley, Jason (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Department of Psychology (Contributor)
Created2014-05
136396-Thumbnail Image.png
Description
This paper goes through a two-pronged approach in the attempt to understand E-Sports, entertainment gaming, and the creation of the E-Sports bar/Barcade. The first portion aims to explain and quantify the growth of electronic sports (or E-sports). This new craze has been growing immensely in the past 5 years, by

This paper goes through a two-pronged approach in the attempt to understand E-Sports, entertainment gaming, and the creation of the E-Sports bar/Barcade. The first portion aims to explain and quantify the growth of electronic sports (or E-sports). This new craze has been growing immensely in the past 5 years, by viewership and by monetary endorsements. With these changes and growth patterns, we then move on to explain one of the many niche markets that has been created from the growth of E-sports and entertainment gaming. Through our experience in the field, we have evaluated 8 E-sports bars and Barcades in order to confirm their viability in the marketplace. Through our worldwide research we have found that E-sports will continue to grow and that Barcades will not only be viable, but will be a competitive market in the next 10-20 years.
ContributorsNist, Nicholas (Co-author) / Hester, James (Co-author) / Brooks, Dan (Thesis director) / Forss, Brennan (Committee member) / Barrett, The Honors College (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor) / Department of Psychology (Contributor)
Created2015-05
Description

The following creative project defends that, whether intentionally or not, mental illness and substance abuse are inevitably romanticized in young adult media and discusses the dangers of this romanticization. This project is divided into three parts. The first part consists of psychological evaluations of the main characters of two popular,

The following creative project defends that, whether intentionally or not, mental illness and substance abuse are inevitably romanticized in young adult media and discusses the dangers of this romanticization. This project is divided into three parts. The first part consists of psychological evaluations of the main characters of two popular, contemporary forms of young adult media, Catcher in the Rye by J.D Salinger and Euphoria by Sam Levinson. These evaluations use textual evidence and the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) to determine what symptoms of psychopathology the characters appear to display. The second part consists of a self-written short story that is meant to accurately depict the life of a young adult struggling with mental illness and substance abuse. This story contains various aesthetic techniques borrowed from the two young adult media forms. The final part consists of an aesthetic statement which discusses in depth the aesthetic techniques employed within the short story, Quicksand by Anisha Mehra.

ContributorsMehra, Anisha (Author) / Cryer, Michael (Thesis director) / Cavanaugh Toft, Carolyn (Committee member) / Department of Psychology (Contributor) / Dean, The College of Liberal Arts and Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147563-Thumbnail Image.png
Description

The Beck Depression Inventory II (BDI-II) and the Patient Health Questionnaire 9 (PHQ-9) are highly valid depressive testing tools used to measure the symptom profile of depression globally and in South Asia, respectively (Steer et al., 1998; Kroenke et al, 2001). Even though the South Asian population comprises only

The Beck Depression Inventory II (BDI-II) and the Patient Health Questionnaire 9 (PHQ-9) are highly valid depressive testing tools used to measure the symptom profile of depression globally and in South Asia, respectively (Steer et al., 1998; Kroenke et al, 2001). Even though the South Asian population comprises only 23% of the world’s population, it represents one-fifth of the world’s mental health disorders (Ogbo et al., 2018). Although this population is highly affected by mental disorders, there is a lack of culturally relevant research on specific subsections of the South Asian population.<br/><br/>As such, the goal of this study is to investigate the differences in the symptom profile of depression in native and immigrant South Asian populations. We investigated the role of collective self-esteem and perceived discrimination on mental health. <br/><br/>For the purpose of this study, participants were asked a series of questions about their depressive symptoms, self-esteem and perceived discrimination using various depressive screening measures, a self-esteem scale, and a perceived discrimination scale.<br/><br/>We found that immigrants demonstrated higher depressive symptoms than Native South Asians as immigration was viewed as a stressor. First-generation and second-generation South Asian immigrants identified equally with somatic and psychological symptoms. These symptoms were positively correlated with perceived discrimination, and collective self-esteem was shown to increase the likelihood of these symptoms.<br/><br/>This being said, the results from this study may be generalized only to South Asian immigrants who come from highly educated and high-income households. Since seeking professional help and being aware of one’s mental health is vital for wellbeing, the results from this study may spark the interest in an open communication about mental health within the South Asian immigrant community as well as aid in the restructuring of a highly reliable and valid measurement to be specific to a culture.

ContributorsMurthy, Nithara (Co-author) / Swaminathan, Manasa (Co-author) / Vogel, Joanne (Thesis director) / Kwan, Sau (Committee member) / Department of Psychology (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152291-Thumbnail Image.png
Description
Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions.
ContributorsLiu, Hao (Author) / Kuang, Yang (Thesis advisor) / Jackiewicz, Zdzislaw (Committee member) / Lanchier, Nicolas (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2013
151725-Thumbnail Image.png
Description
Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina

Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas.
ContributorsPierini, Nicole A (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhi-Hua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151575-Thumbnail Image.png
Description
A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior

A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior membrane boundaries, including a model for ion channels in the membranes that facilitate the transfer of ions in and out of cells. The model is applied to the triad synapse found in the outer plexiform layer of the retina in most species. Experimental evidence suggests the existence of a negative feedback pathway between horizontal cells and cone photoreceptors that modulates the flow of calcium ions into the synaptic terminals of cones. However, the underlying mechanism for this feedback is controversial and there are currently three competing hypotheses: the ephaptic hypothesis, the pH hypothesis and the GABA hypothesis. The goal of this work is to test some features of the ephaptic hypothesis using detailed simulations that employ rigorous numerical methods. The model is first applied in a simple rectangular geometry to demonstrate the effects of feedback for different extracellular gap widths. The model is then applied to a more complex and realistic geometry to demonstrate the existence of strictly electrical feedback, as predicted by the ephaptic hypothesis. Lastly, the effects of electrical feedback in regards to the behavior of the bipolar cell membrane potential is explored. Figures for the ion densities and electric potential are presented to verify key features of the model. The computed steady state IV curves for several cases are presented, which can be compared to experimental data. The results provide convincing evidence in favor of the ephaptic hypothesis since the existence of feedback that is strictly electrical in nature is shown, without any dependence on pH effects or chemical transmitters.
ContributorsJones, Jeremiah (Author) / Gardner, Carl (Committee member) / Baer, Steven (Committee member) / Crook, Sharon (Committee member) / Kostelich, Eric (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2013
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
150711-Thumbnail Image.png
Description
In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances

In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances the center flicker response of horizontal cells. The underlying mechanism for the feedback is still unclear but competing hypotheses have been proposed. One is the GABA hypothesis, which states that the feedback is mediated by gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter released from horizontal cells. Another is the ephaptic hypothesis, which contends that the feedback is non-GABAergic and is achieved through the modulation of electrical potential in the intersynaptic cleft between cones and horizontal cells. In this study, a continuum spine model of the cone-horizontal cell synaptic circuitry is formulated. This model, a partial differential equation system, incorporates both the GABA and ephaptic feedback mechanisms. Simulation results, in comparison with experiments, indicate that the ephaptic mechanism is necessary in order for the model to capture the major spatial and temporal dynamics of the BIFE effect. In addition, simulations indicate that the GABA mechanism may play some minor modulation role.
ContributorsChang, Shaojie (Author) / Baer, Steven M. (Thesis advisor) / Gardner, Carl L (Thesis advisor) / Crook, Sharon M (Committee member) / Kuang, Yang (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2012