Matching Items (55)
127976-Thumbnail Image.png
Description

Variation in behaviour among group members often impacts collective outcomes. Individuals may vary both in the task that they perform and in the persistence with which they perform each task. Although both the distribution of individuals among tasks and differences among individuals in behavioural persistence can each impact collective behaviour,

Variation in behaviour among group members often impacts collective outcomes. Individuals may vary both in the task that they perform and in the persistence with which they perform each task. Although both the distribution of individuals among tasks and differences among individuals in behavioural persistence can each impact collective behaviour, we do not know if and how they jointly affect collective outcomes. Here, we use a detailed computational model to examine the joint impact of colony-level distribution among tasks and behavioural persistence of individuals, specifically their fidelity to particular resource sites, on the collective trade-off between exploring for new resources and exploiting familiar ones. We developed an agent-based model of foraging honeybees, parametrized by data from five colonies, in which we simulated scouts, who search the environment for new resources, and individuals who are recruited by the scouts to the newly found resources, i.e. recruits. We varied the persistence of returning to a particular food source of both scouts and recruits and found that, for each value of persistence, there is a different optimal ratio of scouts to recruits that maximizes resource collection by the colony. Furthermore, changes to the persistence of scouts induced opposite effects from changes to the persistence of recruits on the collective foraging of the colony. The proportion of scouts that resulted in the most resources collected by the colony decreased as the persistence of recruits increased. However, this optimal proportion of scouts increased as the persistence of scouts increased. Thus, behavioural persistence and task participation can interact to impact a colony's collective behaviour in orthogonal directions. Our work provides new insights and generates new hypotheses into how variations in behaviour at both the individual and colony levels jointly impact the trade-off between exploring for new resources and exploiting familiar ones.

ContributorsMosqueiro, Thiago (Author) / Cook, Chelsea (Author) / Huerta, Ramon (Author) / Gadau, Juergen (Author) / Smith, Brian (Author) / Pinter-Wollman, Noa (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-30
128048-Thumbnail Image.png
Description

The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in

The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females.

We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways.

These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes of a certain aphid host species (A. pisum) are reared on the same host plant. This difference seems to persist even after the different wasp populations were reared on the same aphid host in the laboratory for more than 50 generations. This indicates that either the imprinting process is very persistent or there is enough genetic/allelic variation between A. ervi populations. The role of distinct molecular mechanisms is discussed in terms of the formation of host fidelity.

Created2017-08-21
128008-Thumbnail Image.png
Description

Nasonia, a genus of four closely related parasitoid insect species, is a model system for genetic research. Their haplodiploid genetics (haploid males and diploid females) and interfertile species are advantageous for the genetic analysis of complex traits and the genetic basis of species differences. A fine-scale genomic map is an

Nasonia, a genus of four closely related parasitoid insect species, is a model system for genetic research. Their haplodiploid genetics (haploid males and diploid females) and interfertile species are advantageous for the genetic analysis of complex traits and the genetic basis of species differences. A fine-scale genomic map is an important tool for advancing genetic studies in this system. We developed and used a hybrid genotyping microarray to generate a high-resolution genetic map that covers 79% of the sequenced genome of Nasonia vitripennis. The microarray is based on differential hybridization of species-specific oligos between N. vitripennis and Nasonia giraulti at more than 20,000 markers spanning the Nasonia genome. The map places 729 scaffolds onto the five linkage groups of Nasonia, including locating many smaller scaffolds that would be difficult to map by other means. The microarray was used to characterize 26 segmental introgression lines containing chromosomal regions from one species in the genetic background of another. These segmental introgression lines have been used for rapid screening and mapping of quantitative trait loci involved in species differences. Finally, the microarray is extended to bulk-segregant analysis and genotyping of other Nasonia species combinations. These resources should further expand the usefulness of Nasonia for studies of the genetic basis and architecture of complex traits and speciation.

ContributorsDesjardins, Christopher A. (Author) / Gadau, Juergen (Author) / Lopez, Jacqueline A. (Author) / Niehuis, Oliver (Author) / Avery, Amanda R. (Author) / Loehlin, David W. (Author) / Richards, Stephen (Author) / Colbourne, John K. (Author) / Werren, John H. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02-01
128570-Thumbnail Image.png
Description

In vitro models that mimic in vivo host-pathogen interactions are needed to evaluate candidate drugs that inhibit bacterial virulence traits. We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic surfaces, using a three-dimensional (3-D) lung epithelial cell model. P. aeruginosa formed antibiotic resistant biofilms on 3-D

In vitro models that mimic in vivo host-pathogen interactions are needed to evaluate candidate drugs that inhibit bacterial virulence traits. We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic surfaces, using a three-dimensional (3-D) lung epithelial cell model. P. aeruginosa formed antibiotic resistant biofilms on 3-D cells without affecting cell viability. The biofilm-inhibitory activity of antibiotics and/or the anti-biofilm peptide DJK-5 were evaluated on 3-D cells compared to a plastic surface, in medium with and without fetal bovine serum (FBS). In both media, aminoglycosides were more efficacious in the 3-D cell model. In serum-free medium, most antibiotics (except polymyxins) showed enhanced efficacy when 3-D cells were present. In medium with FBS, colistin was less efficacious in the 3-D cell model. DJK-5 exerted potent inhibition of P. aeruginosa association with both substrates, only in serum-free medium. DJK-5 showed stronger inhibitory activity against P. aeruginosa associated with plastic compared to 3-D cells. The combined addition of tobramycin and DJK-5 exhibited more potent ability to inhibit P. aeruginosa association with both substrates. In conclusion, lung epithelial cells influence the efficacy of most antimicrobials against P. aeruginosa biofilm formation, which in turn depends on the presence or absence of FBS.

ContributorsCrabbe, Aurelie (Author) / Liu, Yulong (Author) / Matthijs, Nele (Author) / Rigole, Petra (Author) / De La Fuente-Nunez, Cesar (Author) / Davis, Richard (Author) / Ledesma, Maria (Author) / Sarker, Shameema (Author) / Van Houdt, Rob (Author) / Hancock, Robert E. W. (Author) / Coenye, Tom (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2017-03-03
128472-Thumbnail Image.png
Description

A central goal of biology is to uncover the genetic basis for the origin of new phenotypes. A particularly effective approach is to examine the genomic architecture of species that have secondarily lost a phenotype with respect to their close relatives. In the eusocial Hymenoptera, queens and workers have divergent

A central goal of biology is to uncover the genetic basis for the origin of new phenotypes. A particularly effective approach is to examine the genomic architecture of species that have secondarily lost a phenotype with respect to their close relatives. In the eusocial Hymenoptera, queens and workers have divergent phenotypes that may be produced via either expression of alternative sets of caste-specific genes and pathways or differences in expression patterns of a shared set of multifunctional genes. To distinguish between these two hypotheses, we investigated how secondary loss of the worker phenotype in workerless ant social parasites impacted genome evolution across two independent origins of social parasitism in the ant genera Pogonomyrmex and Vollenhovia. We sequenced the genomes of three social parasites and their most-closely related eusocial host species and compared gene losses in social parasites with gene expression differences between host queens and workers. Virtually all annotated genes were expressed to some degree in both castes of the host, with most shifting in queen-worker bias across developmental stages. As a result, despite >1 My of divergence from the last common ancestor that had workers, the social parasites showed strikingly little evidence of gene loss, damaging mutations, or shifts in selection regime resulting from loss of the worker caste. This suggests that regulatory changes within a multifunctional genome, rather than sequence differences, have played a predominant role in the evolution of social parasitism, and perhaps also in the many gains and losses of phenotypes in the social insects.

ContributorsSmith, Chris R. (Author) / Helms Cahan, Sara (Author) / Kemena, Carsten (Author) / Brady, Sean G. (Author) / Yang, Wei (Author) / Bornberg-Bauer, Erich (Author) / Eriksson, Ti (Author) / Gadau, Juergen (Author) / Helmkampf, Martin (Author) / Gotzek, Dietrich (Author) / Okamoto Miyakawa, Misato (Author) / Suarez, Andrew V. (Author) / Mikheyev, Alexander (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-29
128424-Thumbnail Image.png
Description

Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI) effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In

Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI) effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In this study, we develop new numerical algorithms to characterize the thermodynamics of urban nocturnal cooling based on solving the energy balance equations for both the landscape surface and the overlying atmosphere. Further, a scaling law is proposed to relate the UHI intensity to a range of governing mechanisms, including the vertical and horizontal transport of heat in the surface layer, the urban-rural breeze, and the possible urban expansion. The accuracy of proposed methods is evaluated against in-situ urban measurements collected in cities with different geographic and climatic conditions. It is found that the vertical and horizontal contributors modulate the nocturnal UHI at distinct elevation in the atmospheric boundary layer.

ContributorsWang, Zhi-Hua (Author) / Li, Qi (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-04
128466-Thumbnail Image.png
Description

It has long been accepted that modern reproductive patterns are likely contributors to breast cancer susceptibility because of their influence on hormones such as estrogen and the importance of these hormones in breast cancer. We conducted a meta-analysis to assess whether this ‘evolutionary mismatch hypothesis’ can explain susceptibility to both

It has long been accepted that modern reproductive patterns are likely contributors to breast cancer susceptibility because of their influence on hormones such as estrogen and the importance of these hormones in breast cancer. We conducted a meta-analysis to assess whether this ‘evolutionary mismatch hypothesis’ can explain susceptibility to both estrogen receptor positive (ER-positive) and estrogen receptor negative (ER-negative) cancer. Our meta-analysis includes a total of 33 studies and examines parity, age of first birth and age of menarche broken down by estrogen receptor status. We found that modern reproductive patterns are more closely linked to ER-positive than ER-negative breast cancer. Thus, the evolutionary mismatch hypothesis for breast cancer can account for ER-positive breast cancer susceptibility but not ER-negative breast cancer.

ContributorsAktipis, C. Athena (Author) / Ellis, Bruce J. (Author) / Nishimura, Katherine K. (Author) / Hiatt, Robert A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-11
128468-Thumbnail Image.png
Description

In a meta-analysis published by myself and co-authors, we report differences in the life history risk factors for estrogen receptor negative (ER−) and estrogen receptor positive (ER+) breast cancers. Our meta-analysis did not find the association of ER− breast cancer risk with fast life history characteristics that Hidaka and Boddy

In a meta-analysis published by myself and co-authors, we report differences in the life history risk factors for estrogen receptor negative (ER−) and estrogen receptor positive (ER+) breast cancers. Our meta-analysis did not find the association of ER− breast cancer risk with fast life history characteristics that Hidaka and Boddy suggest in their response to our article. There are a number of possible explanations for the differences between their conclusions and the conclusions we drew from our meta-analysis, including limitations of our meta-analysis and methodological challenges in measuring and categorizing estrogen receptor status. These challenges, along with the association of ER+ breast cancer with slow life history characteristics, may make it challenging to find a clear signal of ER− breast cancer with fast life history characteristics, even if that relationship does exist. The contradictory results regarding breast cancer risk and life history characteristics illustrate a more general challenge in evolutionary medicine: often different sub-theories in evolutionary biology make contradictory predictions about disease risk. In this case, life history models predict that breast cancer risk should increase with faster life history characteristics, while the evolutionary mismatch hypothesis predicts that breast cancer risk should increase with delayed reproduction. Whether life history tradeoffs contribute to ER− breast cancer is still an open question, but current models and several lines of evidence suggest that it is a possibility.

ContributorsAktipis, C. Athena (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-21
Description

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.

Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.

Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.

ContributorsSadd, Ben M. (Author) / Barribeau, Seth M. (Author) / Bloch, Guy (Author) / de Graaf, Dirk C. (Author) / Dearden, Peter (Author) / Elsik, Christine G. (Author) / Gadau, Juergen (Author) / Grimmelikhuijzen, Cornelis J. P. (Author) / Hasselmann, Martin (Author) / Lozier, Jeffrey D. (Author) / Robertson, Hugh M. (Author) / Smagghe, Guy (Author) / Stolle, Eckart (Author) / Van Vaerenbergh, Matthias (Author) / Waterhouse, Robert M. (Author) / Bornberg-Bauer, Erich (Author) / Klasberg, Steffen (Author) / Bennett, Anna K. (Author) / Camara, Francisco (Author) / Guigo, Roderic (Author) / Hoff, Katharina (Author) / Mariotti, Marco (Author) / Munoz-Torres, Monica (Author) / Murphy, Terence (Author) / Santesmasses, Didac (Author) / Amdam, Gro (Author) / Beckers, Matthew (Author) / Beye, Martin (Author) / Biewer, Matthias (Author) / Bitondi, Marcia MG (Author) / Blaxter, Mark L. (Author) / Bourke, Andrew FG (Author) / Brown, Mark JF (Author) / Buechel, Severine D. (Author) / Cameron, Rossanah (Author) / Cappelle, Kaat (Author) / Carolan, James C. (Author) / Christiaens, Olivier (Author) / Ciborowski, Kate L. (Author) / Clarke, David F. (Author) / Colgan, Thomas J. (Author) / Collins, David H. (Author) / Cridge, Andrew G. (Author) / Dalmay, Tamas (Author) / Dreier, Stephanie (Author) / du Plessis, Louis (Author) / Duncan, Elizabeth (Author) / Erler, Silvio (Author) / Evans, Jay (Author) / Falcon, Talgo (Author) / Flores, Kevin (Author) / Freitas, Flavia CP (Author) / Fuchikawa, Taro (Author) / Gempe, Tanja (Author) / Hartfelder, Klaus (Author) / Hauser, Frank (Author) / Helbing, Sophie (Author) / Humann, Fernanda (Author) / Irvine, Frano (Author) / Jermiin, Lars S (Author) / Johnson, Claire E. (Author) / Johnson, Reed M (Author) / Jones, Andrew K. (Author) / Kadowaki, Tatsuhiko (Author) / Kidner, Jonathan H. (Author) / Koch, Vasco (Author) / Kohler, Arian (Author) / Kraus, F. Bernhard (Author) / Lattorff, H. Michael G. (Author) / Leask, Megan (Author) / Lockett, Gabrielle A. (Author) / Mallon, Eamonn B. (Author) / Marco Antonio, David S. (Author) / Marxer, Monika (Author) / Meeus, Ivan (Author) / Moritz, Robin FA (Author) / Nair, Ajay (Author) / Napflin, Kathrin (Author) / Nissen, Inga (Author) / Niu, Jinzhi (Author) / Nunes, Francis MF (Author) / Oakeshott, John G. (Author) / Osborne, Amy (Author) / Otte, Marianne (Author) / Pinheiro, Daniel G. (Author) / Rossie, Nina (Author) / Rueppell, Olav (Author) / Santos, Carolina G (Author) / Schmid-Hempel, Regula (Author) / Schmitt, Bjorn D. (Author) / Schulte, Christina (Author) / Simoes, Zila LP (Author) / Soares, Michelle PM (Author) / Swevers, Luc (Author) / Winnebeck, Eva C. (Author) / Wolschin, Florian (Author) / Yu, Na (Author) / Zdobnov, Evgeny M (Author) / Aqrawi, Peshtewani K (Author) / Blakenburg, Kerstin P (Author) / Coyle, Marcus (Author) / Francisco, Liezl (Author) / Hernandez, Alvaro G. (Author) / Holder, Michael (Author) / Hudson, Matthew E. (Author) / Jackson, LaRonda (Author) / Jayaseelan, Joy (Author) / Joshi, Vandita (Author) / Kovar, Christie (Author) / Lee, Sandra L. (Author) / Mata, Robert (Author) / Mathew, Tittu (Author) / Newsham, Irene F. (Author) / Ngo, Robin (Author) / Okwuonu, Geoffrey (Author) / Pham, Christopher (Author) / Pu, Ling-Ling (Author) / Saada, Nehad (Author) / Santibanez, Jireh (Author) / Simmons, DeNard (Author) / Thornton, Rebecca (Author) / Venkat, Aarti (Author) / Walden, Kimberly KO (Author) / Wu, Yuan-Qing (Author) / Debyser, Griet (Author) / Devreese, Bart (Author) / Asher, Claire (Author) / Blommaert, Julie (Author) / Chipman, Ariel D. (Author) / Chittka, Lars (Author) / Fouks, Bertrand (Author) / Liu, Jisheng (Author) / O'Neill, Meaghan P (Author) / Sumner, Seirian (Author) / Puiu, Daniela (Author) / Qu, Jiaxin (Author) / Salzberg, Steven L (Author) / Scherer, Steven E (Author) / Muzny, Donna M. (Author) / Richards, Stephen (Author) / Robinson, Gene E (Author) / Gibbs, Richard A. (Author) / Schmid-Hempel, Paul (Author) / Worley, Kim C (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-24
155731-Thumbnail Image.png
Description
Urbanization and woody plant encroachment, with subsequent brush management, are two significant land cover changes that are represented in the southwestern United States. Urban areas continue to grow, and rangelands are undergoing vegetation conversions, either purposely through various rangeland management techniques, or by accident, through inadvertent effects of climate and

Urbanization and woody plant encroachment, with subsequent brush management, are two significant land cover changes that are represented in the southwestern United States. Urban areas continue to grow, and rangelands are undergoing vegetation conversions, either purposely through various rangeland management techniques, or by accident, through inadvertent effects of climate and management. This thesis investigates how areas undergoing land cover conversions in a semiarid region, through urbanization or rangeland management, influences energy, water and carbon fluxes. Specifically, the following scientific questions are addressed: (1) what is the impact of different urban land cover types in Phoenix, AZ on energy and water fluxes?, (2) how does the land cover heterogeneity influence energy, water, and carbon fluxes in a semiarid rangeland undergoing woody plant encroachment?, and (3) what is the impact of brush management on energy, water, and carbon fluxes?

The eddy covariance technique is well established to measure energy, water, and carbon fluxes and is used to quantify and compare flux measurements over different land surfaces. Results reveal that in an urban setting, paved surfaces exhibit the largest sensible and lowest latent heat fluxes in an urban environment, while a mesic landscape exhibits the largest latent heat fluxes, due to heavy irrigation. Irrigation impacts flux sensitivity to precipitation input, where latent heat fluxes increase with precipitation in xeric and parking lot landscapes, but do not impact the mesic system. In a semiarid managed rangeland, past management strategies and disturbance histories impact vegetation distribution, particularly the distribution of mesquite trees. At the site with less mesquite coverage, evapotranspiration (ET) is greater, due to greater grass cover. Both sites are generally net sinks of CO2, which is largely dependent on moisture availability, while the site with greater mesquite coverage has more respiration and generally greater gross ecosystem production (GEP). Initial impacts of brush management reveal ET and GEP decrease, due to the absence of mesquite trees. However the impact appears to be minimal by the end of the productive season. Overall, this dissertation advances the understanding of land cover change impacts on surface energy, water, and carbon fluxes in semiarid ecosystems.
ContributorsTempleton, Nicole Pierini (Author) / Vivoni, Enrique R (Thesis advisor) / Archer, Steven R (Committee member) / Mascaro, Giuseppe (Committee member) / Scott, Russell L. (Committee member) / Wang, Zhi-Hua (Committee member) / Arizona State University (Publisher)
Created2017