Matching Items (90)
128468-Thumbnail Image.png
Description

In a meta-analysis published by myself and co-authors, we report differences in the life history risk factors for estrogen receptor negative (ER−) and estrogen receptor positive (ER+) breast cancers. Our meta-analysis did not find the association of ER− breast cancer risk with fast life history characteristics that Hidaka and Boddy

In a meta-analysis published by myself and co-authors, we report differences in the life history risk factors for estrogen receptor negative (ER−) and estrogen receptor positive (ER+) breast cancers. Our meta-analysis did not find the association of ER− breast cancer risk with fast life history characteristics that Hidaka and Boddy suggest in their response to our article. There are a number of possible explanations for the differences between their conclusions and the conclusions we drew from our meta-analysis, including limitations of our meta-analysis and methodological challenges in measuring and categorizing estrogen receptor status. These challenges, along with the association of ER+ breast cancer with slow life history characteristics, may make it challenging to find a clear signal of ER− breast cancer with fast life history characteristics, even if that relationship does exist. The contradictory results regarding breast cancer risk and life history characteristics illustrate a more general challenge in evolutionary medicine: often different sub-theories in evolutionary biology make contradictory predictions about disease risk. In this case, life history models predict that breast cancer risk should increase with faster life history characteristics, while the evolutionary mismatch hypothesis predicts that breast cancer risk should increase with delayed reproduction. Whether life history tradeoffs contribute to ER− breast cancer is still an open question, but current models and several lines of evidence suggest that it is a possibility.

ContributorsAktipis, C. Athena (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-21
Description

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1–RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.

ContributorsDriscoll, Brent (Author) / Lunceford, Chad (Author) / Lin, Su (Author) / Woronowicz, K. (Author) / Niederman, R. A. (Author) / Woodbury, Neal (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-28
128749-Thumbnail Image.png
Description

Much of the socioeconomic life in the United States occurs in its urban areas. While an urban economy is defined to a large extent by its network of occupational specializations, an examination of this important network is absent from the considerable body of work on the determinants of urban economic

Much of the socioeconomic life in the United States occurs in its urban areas. While an urban economy is defined to a large extent by its network of occupational specializations, an examination of this important network is absent from the considerable body of work on the determinants of urban economic performance. Here we develop a structure-based analysis addressing how the network of interdependencies among occupational specializations affects the ease with which urban economies can transform themselves. While most occupational specializations exhibit positive relationships between one another, many exhibit negative ones, and the balance between the two partially explains the productivity of an urban economy. The current set of occupational specializations of an urban economy and its location in the occupation space constrain its future development paths. Important tradeoffs exist between different alternatives for altering an occupational specialization pattern, both at a single occupation and an entire occupational portfolio levels.

Created2013-09-09
128753-Thumbnail Image.png
Description

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005–2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors.

Conclusions/Significance: Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS.

ContributorsLiu, Hai-Ning (Author) / Gao, Li-Dong (Author) / Chowell-Puente, Gerardo (Author) / Hu, Shi-Xiong (Author) / Lin, Xiao-Ling (Author) / Li, Xiu-Jun (Author) / Ma, Gui-Hua (Author) / Huang, Ru (Author) / Yang, Hui-Suo (Author) / Tian, Huaiyu (Author) / Xiao, Hong (Author) / Simon M. Levin Mathematical, Computational and Modeling Sciences Center (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-09-03
129094-Thumbnail Image.png
Description

Background:
Pandemic influenza is said to 'shift mortality' to younger age groups; but also to spare a subpopulation of the elderly population. Does one of these effects dominate? Might this have important ramifications?

Methods: We estimated age-specific excess mortality rates for all-years for which data were available in the 20th century for Australia,

Background:
Pandemic influenza is said to 'shift mortality' to younger age groups; but also to spare a subpopulation of the elderly population. Does one of these effects dominate? Might this have important ramifications?

Methods: We estimated age-specific excess mortality rates for all-years for which data were available in the 20th century for Australia, Canada, France, Japan, the UK, and the USA for people older than 44 years of age. We modeled variation with age, and standardized estimates to allow direct comparison across age groups and countries. Attack rate data for four pandemics were assembled.

Results: For nearly all seasons, an exponential model characterized mortality data extremely well. For seasons of emergence and a variable number of seasons following, however, a subpopulation above a threshold age invariably enjoyed reduced mortality. 'Immune escape', a stepwise increase in mortality among the oldest elderly, was observed a number of seasons after both the A(H2N2) and A(H3N2) pandemics. The number of seasons from emergence to escape varied by country. For the latter pandemic, mortality rates in four countries increased for younger age groups but only in the season following that of emergence. Adaptation to both emergent viruses was apparent as a progressive decrease in mortality rates, which, with two exceptions, was seen only in younger age groups. Pandemic attack rate variation with age was estimated to be similar across four pandemics with very different mortality impact.

Conclusions: In all influenza pandemics of the 20th century, emergent viruses resembled those that had circulated previously within the lifespan of then-living people. Such individuals were relatively immune to the emergent strain, but this immunity waned with mutation of the emergent virus. An immune subpopulation complicates and may invalidate vaccine trials. Pandemic influenza does not 'shift' mortality to younger age groups; rather, the mortality level is reset by the virulence of the emerging virus and is moderated by immunity of past experience. In this study, we found that after immune escape, older age groups showed no further mortality reduction, despite their being the principal target of conventional influenza vaccines. Vaccines incorporating variants of pandemic viruses seem to provide little benefit to those previously immune. If attack rates truly are similar across pandemics, it must be the case that immunity to the pandemic virus does not prevent infection, but only mitigates the consequences.

Created2012-12-12
129367-Thumbnail Image.png
Description

In this paper, we present a visual analytics approach that provides decision makers with a proactive and predictive environment in order to assist them in making effective resource allocation and deployment decisions. The challenges involved with such predictive analytics processes include end-users' understanding, and the application of the underlying statistical

In this paper, we present a visual analytics approach that provides decision makers with a proactive and predictive environment in order to assist them in making effective resource allocation and deployment decisions. The challenges involved with such predictive analytics processes include end-users' understanding, and the application of the underlying statistical algorithms at the right spatiotemporal granularity levels so that good prediction estimates can be established. In our approach, we provide analysts with a suite of natural scale templates and methods that enable them to focus and drill down to appropriate geospatial and temporal resolution levels. Our forecasting technique is based on the Seasonal Trend decomposition based on Loess (STL) method, which we apply in a spatiotemporal visual analytics context to provide analysts with predicted levels of future activity. We also present a novel kernel density estimation technique we have developed, in which the prediction process is influenced by the spatial correlation of recent incidents at nearby locations. We demonstrate our techniques by applying our methodology to Criminal, Traffic and Civil (CTC) incident datasets.

Created2014-12-01
128796-Thumbnail Image.png
Description

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data is desirable to understand the seasonality of community acquired (CA)-MRSA

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data is desirable to understand the seasonality of community acquired (CA)-MRSA infections at the population level. In this paper, using data on monthly SSTI incidence in children aged 0–19 years and enrolled in Medicaid in Maricopa County, Arizona, from January 2005 to December 2008, we carried out time-series and nonlinear regression analysis to determine the periodicity, trend, and peak timing in SSTI incidence in children at different age: 0-4 years, 5-9 years, 10-14 years, and 15-19 years. We also assessed the temporal correlation between SSTI incidence and meteorological variables including average temperature and humidity. Our analysis revealed a strong annual seasonal pattern of SSTI incidence with peak occurring in early September. This pattern was consistent across age groups. Moreover, SSTIs followed a significantly increasing trend over the 4-year study period with annual incidence increasing from 3.36% to 5.55% in our pediatric population of approximately 290,000. We also found a significant correlation between the temporal variation in SSTI incidence and mean temperature and specific humidity. Our findings could have potential implications on prevention and control efforts against CA-MRSA.

Created2013-04-02
128797-Thumbnail Image.png
Description

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

ContributorsFu, Jinglin (Author) / Reinhold, Jeremy (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2011-04-08
128801-Thumbnail Image.png
Description

Cancer therapy selects for cancer cells resistant to treatment, a process that is fundamentally evolutionary. To what extent, however, is the evolutionary perspective employed in research on therapeutic resistance and relapse? We analyzed 6,228 papers on therapeutic resistance and/or relapse in cancers and found that the use of evolution terms

Cancer therapy selects for cancer cells resistant to treatment, a process that is fundamentally evolutionary. To what extent, however, is the evolutionary perspective employed in research on therapeutic resistance and relapse? We analyzed 6,228 papers on therapeutic resistance and/or relapse in cancers and found that the use of evolution terms in abstracts has remained at about 1% since the 1980s. However, detailed coding of 22 recent papers revealed a higher proportion of papers using evolutionary methods or evolutionary theory, although this number is still less than 10%. Despite the fact that relapse and therapeutic resistance is essentially an evolutionary process, it appears that this framework has not permeated research. This represents an unrealized opportunity for advances in research on therapeutic resistance.

ContributorsAktipis, C. Athena (Author) / Kwan, Sau (Author) / Johnson, Kathryn (Author) / Neuberg, Steven (Author) / Maley, Carlo C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-11-17
128802-Thumbnail Image.png
Description

The large-scale use of antivirals during influenza pandemics poses a significant selection pressure for drug-resistant pathogens to emerge and spread in a population. This requires treatment strategies to minimize total infections as well as the emergence of resistance. Here we propose a mathematical model in which individuals infected with wild-type

The large-scale use of antivirals during influenza pandemics poses a significant selection pressure for drug-resistant pathogens to emerge and spread in a population. This requires treatment strategies to minimize total infections as well as the emergence of resistance. Here we propose a mathematical model in which individuals infected with wild-type influenza, if treated, can develop de novo resistance and further spread the resistant pathogen. Our main purpose is to explore the impact of two important factors influencing treatment effectiveness: i) the relative transmissibility of the drug-resistant strain to wild-type, and ii) the frequency of de novo resistance. For the endemic scenario, we find a condition between these two parameters that indicates whether treatment regimes will be most beneficial at intermediate or more extreme values (e.g., the fraction of infected that are treated). Moreover, we present analytical expressions for effective treatment regimes and provide evidence of its applicability across a range of modeling scenarios: endemic behavior with deterministic homogeneous mixing, and single-epidemic behavior with deterministic homogeneous mixing and stochastic heterogeneous mixing. Therefore, our results provide insights for the control of drug-resistance in influenza across time scales.

Created2013-03-29